Page:EB1911 - Volume 01.djvu/295

From Wikisource
Jump to navigation Jump to search
This page has been validated.
260
AERONAUTICS
  

atmospheric pressure occur in springs in various parts of the world (see Mineral Waters). Such waters, which also generally hold in solution a considerable percentage of saline constituents, early acquired a reputation as medicinal agents, and when carbon dioxide (fixed air) became familiar to chemists the possibility was recognized, as by Joseph Priestley (Directions for impregnating water with fixed air . . . to communicate the peculiar Spirit and Virtues of Pyrmont water, 1772), of imitating them artificially. Many of the ordinary aerated waters of commerce, however, do not pretend to reproduce any known natural water; they are merely beverages owing their popularity to their effervescing properties and the flavour imparted by a small quantity of some salt such as sodium bicarbonate or a little fruit syrup. Their manufacture on a considerable scale was begun at Geneva so far back as 1790 by Nicholas Paul, and the excellence of the soda water prepared in London by J. Schweppe, who had been a partner of Paul’s, is referred to by Tiberius Cavallo in his Essay on the Medicinal Properties of Factitious Airs, published in 1798. Many forms of apparatus are employed for charging the water with the gas. A simple machine for domestic use, called a gasogene or seltzogene, consists of two strong glass globes connected one above the other by a wide glass tube which rises nearly to the top of the upper and smaller globe. Surmounting the small globe there is a spring valve, fitted to a narrow tube that passes through the wide tube to the bottom of the large globe. To use the machine, the lower vessel is filled with water, and in the upper one, round the base of the wide tube, is placed a mixture, commonly of sodium bicarbonate and tartaric acid, which with water yields carbon dioxide. The valve head is then fastened on, and by tilting the apparatus some water is made to flow through the wide tube from the lower to the upper vessel. The water in the lower globe takes up the gas thus produced, and when required for use is withdrawn by the valve, being forced up the narrow tube by the pressure of the gas. In another arrangement the gas is supplied compressed in little steel capsules, and is liberated into a bottle containing the water which has to be aerated. On a large scale, use is made of continuously acting machinery which is essentially of the type devised by Joseph Bramah. The gas is prepared in a separate generator by the action of sulphuric acid on sodium bicarbonate or whiting, and after being washed is collected in a gas-holder, whence it is forced with water under pressure into a receiver or saturator in which an agitator is kept moving. Some manufacturers buy their gas compressed in steel cylinders. The water thus aerated or carbonated passes from the receiver, in which the pressure may be 100–200 ℔ on the square inch, to bottling machines which fill and close the bottles; if beverages like lemonade are being made the requisite quantity of fruit syrup is also injected into the bottles, though sometimes the fruit syrup mixture is aerated in bulk. For soda water sodium bicarbonate should be added to the water before aeration, in varying proportions up to about 15 grains per pint, but the simple carbonated water often does duty instead. Potash water, lithia water and many others are similarly prepared, the various salts being used in such amounts as are dictated by the experience and taste of the manufacturer. Aerated waters are sent out from the factories either in siphons (q.v.) or in bottles; the latter may be closed by corks, or by screw-stoppers or by internal stoppers consisting of a valve, such as a glass ball, held up against an india rubber ring in the neck by the pressure of the gas. For use in soda-fountains the waters are sent out in large cylinders.

See W. Kirkby, Evolution of Artificial Mineral Waters (Manchester, 1902).


AERONAUTICS, the art of “navigating” the “air.” It is divisible into two main branches—aerostation, dealing properly with machines which like balloons are lighter than the air, and aviation, dealing with the problem of artificial flight by means of flying machines which, like birds, are heavier than the air, and also with attempts to fly made by human beings by the aid of artificial wings fitted to their limbs.

Historically, aviation is the older of the two, and in the legends or myths of men or animals which are supposed to have travelled through the air, such as Pegasus, Medea’s dragons and Daedalus, as well as in Egyptian bas-reliefs, wings appear as the means by which aerial locomotion is effected. In later times there are many stories of men who have attempted to fly in the same way. John Wilkins (1614–1672), one of the founders of the Royal Society and bishop of Chester, who in 1640 discussed the possibility of reaching the moon by volitation, says in his Mathematical Magick (1648) that it was related that “a certain English monk called Elmerus, about the Confessor’s time,” flew from a town in Spain for a distance of more than a furlong; and that other persons had flown from St Mark’s, Venice, and at Nuremberg. Giovanni Battista Dante, of Perugia, is said to have flown several times across Lake Trasimene. At the beginning of the 16th century an Italian alchemist who was collated to the abbacy of Tungland, in Galloway, Scotland, by James IV., undertook to fly from the walls of Stirling Castle through the air to France. He actually attempted the feat, but soon came to the ground and broke his thigh-bone in the fall—an accident which he explained by asserting that the wings he employed contained some fowls’ feathers, which had an “affinity” for the dung-hill, whereas if they had been composed solely of eagles’ feathers they would have been attracted to the air. This anecdote furnished Dunbar, the Scottish poet, with the subject of one of his rude satires. Leonardo da Vinci about the same time approached the problem in a more scientific spirit, and his notebooks contain several sketches of wings to be fitted to the arms and legs. In the following century a lecture on flying delivered in 1617 by Fleyder, rector of the grammar school at Tubingen, and published eleven years later, incited a poor monk to attempt to put the theory into practice, but his machinery broke down and he was killed.

In Francis Bacon’s Natural History there are two passages which refer to flying, though they scarcely bear out the assertion made by some writers that he first published the true principles of aeronautics.

The first is styled Experiment Solitary, touching Flying in the Air:—“Certainly many birds of good wing (as kites and the like) would bear up a good weight as they fly; and spreading feathers thin and close, and in great breadth, will likewise bear up a great weight, being even laid, without tilting up on the sides. The farther extension of this experiment might be thought upon.” The second passage is more diffuse, but less intelligible; it is styled Experiment Solitary, touching the Flying of unequal Bodies in the Air:—“Let there be a body of unequal weight (as of wool and lead or bone and lead); if you throw it from you with the light end forward, it will turn, and the weightier end will recover to be forwards, unless the body be over long. The cause is, for that the more dense body hath a more violent pressure of the parts from the first impulsion, which is the cause (though heretofore not found out, as hath been often said) of all violent motions; and when the hinder part moveth swifter (for that it less endureth pressure of parts) than the forward part can make way for it, it must needs be that the body turn over; for (turned) it can more easily draw forward the lighter part.” The fact here alluded to is the resistance that bodies experience in moving through the air, which, depending on the quantity of surface merely, must exert a proportionally greater effect on rare substances. The passage itself, however, after making every allowance for the period in which it was written, must be deemed confused, obscure and unphilosophical.

In his posthumous work, De Motu Animalium, published at Rome in 1680–1681, G. A. Borelli gave calculations of the enormous strength of the pectoral muscles in birds; and his proposition cciv. (vol. i. pp. 322-326), entitled Est impossibile ut homines propriis viribus artificiose volare possint, points out the impossibility of man being able by his muscular strength to give motion to wings of sufficient extent to keep him suspended in the air. But during his lifetime two Frenchmen, Allard in 1660 and Besnier about 1678, are said to have succeeded in making short flights. An account of some of the modern attempts to construct flying machines will be found in the article Flight and Flying; here we append a brief consideration of the mechanical aspects of the problem.

The very first essential for success is safety, which will probably only be attained with automatic stability. The underlying principle is that the centre of gravity shall at all times be on the same vertical line as the centre of pressure. The latter varies with the angle of incidence. For square planes it moves approximately as expressed