Page:EB1911 - Volume 01.djvu/723

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
ALKALI MANUFACTURE
681

crystals of monohydrated sodium carbonate “fished” out as they are formed, but this is mostly done after submitting the liquor to the purifying operations which we shall now describe.

The dried or “finished” soda-ash is ground to a pretty fine powder and is packed into wooden casks or “tierces,” holding from 10 to about 20 cwt. each, according to the way of filling them.

The principal impurities of crude vat-liquor are sodium hydrate and sulphide, the latter of which always leads to the formation of soluble double sulphur salts of sodium and iron. The other impurities are of minor importance. The sulphides can be removed by “oxidizing” them into thiosulphates by means of atmospheric air, with or without the assistance of other agents, such as manganese peroxide; or by “carbonating” them with lime-kiln or other gases containing carbon dioxide; or by precipitating them with lead or zinc oxide. The last mentioned is the best but costliest method, and is employed only in the manufacture of the highest strengths of caustic soda. The most usual process, where soda-ash is to be made, is the “carbonating.” This is usually effected either by forcing lime-kiln gas through the liquor, contained in a closed iron vessel, or by passing the gases through an iron tower filled with coke or other materials, suitable for subdividing the stream of the gases and that of the vat-liquor which trickles down in the tower. The same apparatus is used for “oxidizing” by means of atmospheric air passed through by means of an injector; sometimes both air and carbon dioxide are passed in at the same time. The operation is finished when all the sodium sulphide has been converted into normal sodium carbonate, partly also into acid sodium carbonate (bicarbonate) NaHCO3; at the same time a precipitate is formed, consisting of ferrous sulphide, alumina and silica, which is removed by another settling tank, and the clear liquor is now ready either for boiling down in a “fishing-pan” for the manufacture of white soda-ash, or for the process of causticizing.

Soda-ash (as well as caustic soda) is sold by degrees of “available soda.” This means that portion which neutralizes the acid employed for testing, and the degrees mean the percentage of Na2O thus found, whether it be present as Na2CO3, NaOH, or sodium aluminate or silicate. The purest soda-ash, equal to 100% Na2CO3, would be 581/2 degrees of available soda. The ordinary commercial strength of Leblanc soda-ash is from 52 to 54 degrees (in former times much was sold in the state of 48%).

6. Manufacture of Caustic Soda.—Most of the Leblanc liquor is nowadays converted into caustic soda, as white soda-ash is more easily and cheaply made by the ammonia-soda process. We shall therefore in this place describe the manufacture of caustic soda. This is always made from the carbonate by the action of slaked lime: Na2CO3+Ca(OH)2=CaCO3+2NaOH. The calcium carbonate, being insoluble, is easily separated from the caustic liquor by filtration. But as this reaction is reversible, we must observe the conditions necessary for directing it in the right sense. These are: diluting with water so as not to exceed 10% of sodium carbonate to 90% of water; boiling this mixture; and keeping it well agitated. At the best about 92% of the sodium carbonate can be converted into caustic soda, 8% remaining unchanged.

The operation is performed in iron cylinders, provided with an agitating arrangement. This may consist of a steam injector by means of which air is made to bubble through the liquid, which produces both the required agitation and the heating, and at the same time oxidizes at least part of the sulphides; but this method of agitation causes a great waste of steam and at the same time a further dilution of the liquor. Many, therefore, prefer mechanical stirring by means of paddles, fixed either to a vertical or to a horizontal shaft, and inject only sufficient steam to keep the mass at the proper temperature. Some heat is also gained by the slaking of the caustic lime within the liquor. After from half an hour to a whole hour the conversion of sodium carbonate into sodium hydrate is brought about as far as is practicable. The whole mass is now run into the filters, which are always constructed on the vacuum principle. They are iron boxes, in which a bed is made of bricks, above them gravel, and over this sand, covered on the top by iron grids. The space below the sieve thus formed is connected by means of an outlet tap with a closed tank, and this again communicates with a vacuum pump. By this means the filtration is quickened by the atmospheric pressure, and goes on very rapidly, as also does the subsequent washing. The filtered caustic liquor passes to the concentration plants; the washings are employed for diluting fresh vat-liquor for the next operation, or for dissolving solid soda-ash for the same purpose. The washed-out calcium carbonate, which always contains much calcium hydrate and 2 or 3% of soda in various forms, usually goes back to the black-ash furnaces, but it cannot be always used up in this way, and what remains is thrown upon a heap outside the works. Attempts have been made to use it in the manufacture of Portland cement, but without much success.

Fig. 8.—Caustic Soda Concentration Boat-pan. (Sectional Elevation.)

The clear caustic soda liquor must be concentrated in such a way that the caustic soda cannot to any great extent be reconverted into sodium carbonate, and that the “salts” which it contains, sodium carbonate, sulphate, chloride, &c., can be. separated during the process. Formerly the most usual concentrating apparatus was the “boat-pan” (fig. 8). This is an oblong iron pan, the bottom of which slopes from both sides to a narrow channel. The latter rests on a brick pillar; the remaining part of the sloping bottom is heated, either by the waste fire from a black-ash furnace or by a special fireplace. This arrangement has the effect that the salts, as they separate out, slide down the sloping part and arrive in the central channel, which is not exposed to the fire-gases, so that they quietly settle there, without caking to the pan, until they are fished out by means of perforated ladles. These boat-pans were for many years almost everywhere employed, and did their work quite well, but rather expensively. At many works they have been replaced by either Thelen pans or vacuum pans.

The “Thélen pan” (thus named from its inventor, a foreman at the Rhenania works near Aachen) is a mechanically worked fishing-pan, which requires considerably less labour and coal than ordinary boat-pans. It is a long trough, of nearly semicircular section, the whole bottom being exposed to the fire-gases. A horizontal shaft runs length-ways through the trough, and is provided with stirring blades, arranged in such a manner that they constantly scrape the bottom, so that the salts cannot burn fast upon it, and are at the same time moved forward towards one of the ends of the trough where they are automatically removed by means of a chain of buckets.

The most efficient evaporating apparatus, as far as economy of fuel is concerned, is the vacuum-pan, of which from two to five are combined to form a set, but it has the drawback that the removal of the salts is much more difficult than with the