Page:EB1911 - Volume 03.djvu/185

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
168
BACTERIOLOGY

That bacterial fermentations are accompanied by the evolution of heat is an old experience; but the discovery that the “spontaneous” combustion of sterilized cotton-waste does not occur simply if moist and freely Thermo-
philous bacteria.
exposed to oxygen, but results when the washings of fresh waste are added, has led to clearer proof that the heating of hay-stacks, hops, tobacco and other vegetable products is due to the vital activity of bacteria and fungi, and is physiologically a consequence of respiratory processes like those in malting. It seems fairly established that when the preliminary heating process of fermentation is drawing to a close, the cotton, hay, &c., having been converted into a highly porous friable and combustible mass, may then ignite in certain circumstances by the occlusion of oxygen, just as ignition is induced by finely divided metals. A remarkable point in this connexion has always been the necessary conclusion that the living bacteria concerned must be exposed to temperatures of at least 70° C. in the hot heaps. Apart from the resolution of doubts as to the power of spores to withstand such temperatures for long periods, the discoveries of Miquel, Globig and others have shown that there are numerous bacteria which will grow and divide at such temperatures, e.g. B. thermophilus, from sewage, which is quite active at 70° C., and B. Ludwigi and B. ilidzensis, &c., from hot springs, &c.

The bodies of sea fish, e.g. mackerel and other animals, have long been known to exhibit phosphorescence. This phenomenon is due to the activity of a whole series of marine bacteria of various genera, the examination Phosphor-
escent bacteria.
and cultivation of which have been successfully carried out by Cohn, Beyerinck, Fischer and others. The cause of the phosphorescence is still a mystery. The suggestion that it is due to the oxidation of a body excreted by the bacteria seems answered by the failure to filter off or extract any such body. Beyerinck’s view that it occurs at the moment peptones are worked up into the protoplasm cannot be regarded as proved, and the same must be said of the suggestion that the phosphorescence is due to the oxidation of phosphoretted hydrogen. The conditions of phosphorescence are, the presence of free oxygen, and, generally, a relatively low temperature, together with a medium containing sodium chloride, and peptones, but little or no carbohydrates. Considerable differences occur in these latter respects, however, and interesting results were obtained by Beyerinck with mixtures of species possessing different powers of enzyme action as regards carbohydrates. Thus, a form termed Photobacterium phosphorescens by Beyerinck will absorb maltose, and will become luminous if that sugar is present, whereas P. Pflugeri is indifferent to maltose. If then we prepare densely inseminated plates of these two bacteria in gelatine food-medium to which starch is added as the only carbohydrate, the bacteria grow but do not phosphoresce. If we now streak these plates with an organism, e.g. a yeast, which saccharifies starch, it is possible to tell whether maltose or levulose and fructose are formed; if the former, only those plates containing P. phosphorescens will become luminous; if the latter, only those containing P. Pflugeri. The more recent researches of Molisch have shown that the luminosity of ordinary butcher’s meat under appropriate conditions is quite a common occurrence. Thus of samples of meat bought in Prague and kept in a cool room for about two days, luminosity was present in 52% of the samples in the case of beef, 50% for veal, and 39% for liver. If the meat was treated previously with a 3% salt solution, 89% of the samples of beef and 65% of the samples of horseflesh were found to exhibit this phenomenon. The cause of this luminosity is Micrococcus phosphorens, an immotile round, or almost round organism. This organism is quite distinct from that causing the luminosity of marine fish.

It has long been known that the production of vinegar depends on the oxidization of the alcohol in wine or beer to acetic acid, the chemical process being probably carried out in two stages, viz. the oxidation Oxidizing bacteria.of the alcohol leading to the formation of aldehyde and water, and the further oxidation of the aldehyde to acetic acid. The process may even go farther, and the acetic acid be oxidized to CO2 and OH2; the art of the vinegar-maker is directed to preventing the accomplishment of the last stage. These oxidations are brought about by the vital activity of several bacteria, of which four—Bacterium aceti, B. pasteurianum, B. kützingianum, and B. xylinum—have been thoroughly studied by Hansen and A. Brown. It is these bacteria which form the zoogloea of the “mother of vinegar,” though this film may contain other organisms as well. The idea that this film of bacteria oxidizes the alcohol beneath by merely condensing atmospheric oxygen in its interstices, after the manner of spongy platinum, has long been given up; but the explanation of the action as an incomplete combustion, depending on the peculiar respiration of these organisms—much as in the case of nitrifying and sulphur bacteria—is not clear, though the discovery that the acetic bacteria will not only oxidize alcohol to acetic acid, but further oxidize the latter to CO2 and OH2 supports the view that the alcohol is absorbed by the organism and employed as its respirable substance. Promise of more light on these oxidation fermentations is afforded by the recent discovery that not only bacteria and fungi, but even the living cells of higher plants, contain peculiar enzymes which possess the remarkable property of “carrying” oxygen—much as it is carried in the sulphuric acid chamber—and which have therefore been termed oxydases. It is apparently the presence of these oxydases which causes certain wines to change colour and alter in taste when poured from bottle to glass, and so exposed to air.

 Fig. 19.—Ginger-beer plant, showing yeast (Saccharomyces pyriformis) entangled
 in the meshes of the bacterium (B. vermiforme).  (H. M. W.) 

Much as the decade from 1880 to 1890 abounded with investigations on the reactions of bacteria to heat, so the following decade was remarkable for discoveries regarding the effects of other forms of radiant energy. Bacteria
and light.
The observations of Downes and Blunt in 1877 left it uncertain whether the bactericidal effects in broth cultures exposed to solar rays were due to thermal action or not. Further investigations, in which Arloing, Buchner, Chmelewski, and others took part, have led to the proof that rays of light alone are quite capable of killing these organisms. The principal questions were satisfactorily settled by Marshall Ward’s experiments in 1892–1893, when he showed that even the spores of B. anthracis, which withstand temperatures of 100° C. and upwards, can be killed by exposure to rays of reflected light at temperatures far below anything injurious, or even favourable to growth. He also showed that the bactericidal action takes place in the absence of food materials, thus proving that it is not merely a poisoning effect of the altered medium. The principal experiments also indicate that it is the rays of highest refrangibility—the blue-violet and ultra-violet rays of the spectrum—which bring about the destruction of the organisms (figs. 17, 18). The practical effect of the bactericidal action of solar light is the destruction of enormous quantities of germs in rivers, the atmosphere and other exposed situations, and experiments have shown that it is especially the pathogenic bacteria—anthrax, typhoid, &c.—which thus succumb to light-action; the discovery that the electric arc is very rich in bactericidal rays led to the hope that it could be used for disinfecting purposes in hospitals, but mechanical difficulties intervene. The recent application of the action of bactericidal rays to the cure of lupus is, however, an extension of the same discovery. Even when the light is not sufficiently intense, or the exposure is too short to kill the spores, the experiments show that attenuation of virulence