which is read off.
Fig. 13.But if the area is too large the pole O may be placed within the area. The rod describes the area between the boundary of the figure and the circle with radius r = OQ, whilst the rod turns once completely round, making α = 2π. The area measured by the wheel is by formula (1), lw + (12l2−lc) 2π.
To this the area of the circle πr 2 must be added, so that now
P = lw + (12l2−lc)2π + πr 2,
or
P = lw + C,
where C = (12l2−lc)2π + πr 2,
is a constant, as it depends on the dimensions of the instrument alone. This constant is given with each instrument.
Amsler’s planimeters are made either with a rod QT of fixed length, which gives the area therefore in terms of a fixed unit, say in square inches, or else the rod can be moved in a sleeve to which the arm OQ is hinged (fig. 13). This makes it possible to change the unit lu, which is proportional to l.
In the planimeters described the recording or integrating apparatus is a smooth wheel rolling on the paper or on some other surface. Amsler has described another recorder, viz. a wheel with a sharp edge. This will roll on the paper but not slip. Let the rod QT carry with it an arm CD perpendicular to it. Let there be mounted on it a wheel W, which can slip along and turn about it.
Fig. 15.If now QT is moved parallel to itself to Q′T′, then W will roll without slipping parallel to QT, and slip along CD. This amount of slipping will equal the perpendicular distance between QT and Q′T′, and therefore serve to measure the area swept over like the wheel in the machine already described. The turning of the rod will also produce slipping of the wheel, but it will be seen without difficulty that this will cancel during a cyclical motion of the rod, provided the rod does not perform a whole rotation.
The first planimeter was made on the following principles:—A frame FF (fig. 15) can move parallel to OX. It carries a rod TT movable along its own length, hence the tracer T can be guided along any curve ATB. When the rod has been pushed back to Q′Q, the tracer moves Early forms.along the axis OX. On the frame a cone VCC′ is mounted with its axis sloping so that its top edge is horizontal and parallel to TT′, whilst its vertex V is opposite Q′. As the frame moves it turns the cone. A wheel W is mounted on the rod at T′, or on an axis parallel to and rigidly connected with it. This wheel rests on the top edge of the cone. If now the tracer T, when pulled out through a distance y above Q, be moved parallel to OX through a distance dx, the frame moves through an equal distance, and the cone turns through an angle dθ proportional to dx. The wheel W rolls on the cone to an amount again proportional to dx, and also proportional to y, its distance from V. Hence the roll of the wheel is proportional to the area ydx described by the rod QT. As T is moved from A to B along the curve the roll of the wheel will therefore be proportional to the area AA′B′B. If the curve is closed, and the tracer moved round it, the roll will measure the area independent of the position of the axis OX, as will be seen by drawing a figure. The cone may with advantage be replaced by a horizontal disk, with its centre at V; this allows of y being negative. It may be noticed at once that the roll of the wheel gives at every moment the area A′ATQ. It will therefore allow of registering a set of values of ydx for any values of x, and thus of tabulating the values of any indefinite integral. In this it differs from Amsler’s planimeter. Planimeters of this type were first invented in 1814 by the Bavarian engineer Hermann, who, however, published nothing. They were reinvented by Prof. Tito Gonnella of Florence in 1824, and by the Swiss engineer Oppikofer, and improved by Ernst in Paris, the astronomer Hansen in Gotha, and others (see Henrici, British Association Report, 1894). But all were driven out of the field by Amsler’s simpler planimeter.
Fig. 17.
Altogether different from the planimeters described is the hatchet planimeter, invented by Captain Prytz, a Dane, and made by Herr Cornelius Knudson in Copenhagen. It consists of a single rigid piece like fig. 16. The one end T is the tracer, the other Q has a sharp Hatchet planimeters.hatchet-like edge. If this is placed with QT on the paper and T is moved along any curve, Q will follow, describing a “curve of pursuit.” In consequence of the sharp edge, Q can only move in the direction of QT, but the whole can turn about Q. Any small step forward can therefore be considered as made up of a motion along QT, together with a turning about Q. The latter motion alone generates an area. If therefore a line OA = QT is turning about a fixed point O, always keeping parallel to QT, it will sweep over an area equal to that generated by the more general motion of QT. Let now (fig. 17) QT be placed on OA, and T be guided round the closed curve in the sense of the arrow. Q will describe a curve OSB. It may be made visible by putting a piece of “copying paper” under the hatchet. When T has returned to A the hatchet has the position BA. A line turning from OA about O kept parallel to QT will describe the circular sector OAC, which is equal in magnitude and sense to AOB. This therefore measures the area generated by the motion of QT. To make this motion cyclical, suppose the hatchet turned about A till Q comes from B to O. Hereby the sector AOB is again described, and again in the positive sense, if it is remembered that it turns about the tracer T fixed at A. The whole area now generated is therefore twice the area of this sector, or equal to OA. OB, where OB is measured along the arc. According to the theorem given above, this area also equals the area of the given curve less the area OSBO. To make this area disappear, a slight modification of the motion of QT is required. Let the tracer T be moved, both from the first position OA and the last BA of the rod, along some straight line AX. Q describes curves OF and BH respectively. Now begin the motion with T at some point R on AX, and move it along this line to A, round the curve and back to R. Q will describe the curve DOSBED, if the motion is again made cyclical by turning QT with T fixed at A. If R is properly selected, the path of Q will cut itself, and parts of the area will be positive, parts negative, as marked in the figure, and may therefore be made to vanish. When this is done the area of the curve will equal twice the area of the sector RDE. It is therefore equal to the arc DE multiplied by the length QT; if the latter equals 10 in., then 10 times the number of inches contained in the arc DE gives the number of square inches contained within the given figure. If the area is not too large, the arc DE may be replaced by the straight line DE.
To use this simple instrument as a planimeter requires the possibility of selecting the point R. The geometrical theory here given has so far failed to give any rule. In fact, every line through any point in the curve contains such a point. The analytical theory of the inventor, which is very similar to that given by F. W. Hill (Phil. Mag. 1894), is too complicated to repeat here. The integrals expressing the area generated by QT have to be expanded in a series. By retaining only the most important terms a result is obtained which comes to this, that if the mass-centre of the area be taken as R, then A may be any point on the curve. This is only approximate. Captain Prytz gives the following instructions:—Take a point R as near as you can guess to the mass-centre, put the tracer T on it, the knife-edge Q outside; make a mark on the paper by pressing the knife-edge into it; guide the tracer from R along a straight line to a point A on the boundary, round the boundary,