Page:EB1911 - Volume 06.djvu/621

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
602
COASTGUARD

Each beam thus lights only one ship at a time, and the movements of several beams crossing and recrossing have a very confusing effect, with the consequent risk that a proportion of the attacking vessels may slip through unnoticed.

An alternative method of using electric lights is to arrange the projector so that the light comes out in a fan (generally of 30° divergence). Two or three such lights are usually placed side by side, forming an illuminated fan of considerable divergence. These fans are now used for the main defence, with in front of them one or more search-lights to warn the defences of the approach of ships. There is some loss of range when using these fans as compared with search-lights, but by occupying both sides of a channel and placing the defences against torpedo boats at the narrowest point, an effective illumination can be obtained in moderate weather.

Heavy guns can, of course, be fired against torpedo boats, but their rate of fire is relatively slow, and at first they had also the disadvantage of using black powder, the smoke of which obscured the lights.

A small quick-firing gun using smokeless powder was seen to be a necessity. At first the 6-pounder was adopted as the stock size supplemented by machine guns for close range, but soon afterwards it became necessary to reconsider the scale of anti-torpedo boat defences, owing first to the increased size of first-class torpedo boats, and secondly to the introduction of a new type of vessel, the torpedo boat destroyer. The increased size of torpedo boats, and improved arrangements for the distribution of coal on board, made these boats practically proof against 6-pounder guns and necessitated the introduction of the 12-pounder. The torpedo boat destroyer, originally introduced to chase and destroy torpedo boats, not only justified its existence by checking the construction of more torpedo boats, but in addition became itself a sea-going torpedo craft, and thus increased the menace to defended ports and also the area over which this form of attack would be dangerous.

This development was met by an increased number of 12-pounder guns, assisted in the more important places by 4.7-in. (and latterly 4-in.) guns, and also by an increased number of lights, both guns and lights increasing at some places nearly fourfold. But even with the best possible arrangement of this form of defence, the possibility of interference by fog, mist or rain introduces a considerable element of uncertainty.

About the same time, and largely on account of the demand for better and quicker firing, the “automatic sight” was introduced (see Ordnance: Garrison; and Sights). In this, a development of the principle of the position-finder, the act of bringing an object into the field of the auto-sight automatically lays the gun. In order to take full advantage of this, the ammunition was made up into a cartridge with powder and shell in one case to allow of the quickest possible loading. It may be added that the efficiency of the auto-sight depends on the gun being a certain height above the water, and that therefore the rise and fall of tide has to be allowed for in setting the sight.

In view of the possible interference by fog it was thought wise at an early stage to provide, towards the rear of the defences, some form of physical obstacle behind which ships could lie in safety. Such an obstacle had been designed in the early days by the Royal Engineers and took the form of a “boom” of baulks of timber secured by chains. Such booms were limited in size by considerations of expense and were only partially successful. About 1892 the British navy took the matter up and began experiments on a larger scale, substituting wire hawsers for chains and using old gunboats to divide the booms up into sections of convenient length. The result was that booms were definitely adopted as an adjunct of coast defence. Their place is behind the lighted area, but within reach of some of the anti-torpedo boat batteries.

Other forms of obstacle to torpedo boat attack, based on a modification of contact mines or a combination of mines and passive obstructions, have been tried but never definitely adopted, though some form of under-water defence of this description seems necessary to meet attack by submarines.

We may now summarize the anti-torpedo boat defences. These are, first, an outpost or look-out line of electric search-lights, then a main lighted area composed of fixed lights with which there are a considerable number of 12-pounder or 4-in. Q.F. guns fitted with auto-sights, and behind all this, usually at the narrowest part of the entrance, the boom.

Once coast defences are designed and installed, little change is possible during an attack, so that the operation of fighting a system of defence, such as we have considered above, is mainly a matter of peace training of gun-crews, electric light men and look-outs, coupled with careful organization. To facilitate the transmission of order and intelligence, a considerable system of telephonic and other electrical communication has been established. This may be considered under the three heads of (1) orders, (2) intelligence, (3) administration.

The communication of orders follows the organization adopted for the whole fortress. Each fortress is commanded by a fortress commander, who has a suitable staff. This officer sends orders to commanders of artillery, engineers, and infantry. The artillery officer in charge of a group of batteries is called a “fire commander”; his command is generally confined to such batteries as fire over the same area of water and can mutually support one another. Thus there may be several fire commanders at a defended port. Anti-torpedo boat batteries are not in a fire command, and are connected to the telephone system for intelligence only and not for orders. The engineers require orders for the control of electric lights or Brennan torpedo. The officer in charge of a group of lights or of a torpedo station is called a director. Though receiving orders direct from the fortress commander, he has also to co-operate with the nearest artillery commander. The infantry are posted on the flanks of the fixed defences, or on the land front. They are divided into suitable groups, each under a commanding officer, who communicates with the fortress commander. In large fortresses the area is divided into sections, each including some portion of the artillery, engineers, and infantry defence. In such cases the section commanders receive orders from the fortress commander and pass them on to their subordinates.

The intelligence system includes communication with the naval signal stations in the vicinity, one of which is specially selected for each port as the warning station and is directly connected to some part of the defences. Another part of the intelligence system deals with the arrangements for examining all ships entering a harbour. This is usually effected by posting in each entrance examination vessels, which are in communication by signal with a battery or selected post on shore. Any points on shore which can see the approaches are connected by a special alarm circuit, mainly for use in case of torpedo boat attack.

The administrative system of telephones is used for daily routine messages. These usually take the form of telephone lines radiating from a central exchange. In many stations the same lines may be used for command and administration, or intelligence and command, but at the larger stations each class of line is kept distinct.  (W. B. B.) 


COASTGUARD, a naval force maintained in Great Britain and Ireland to suppress smuggling, aid shipwrecked vessels and serve as a reserve to the navy. The coastguard was originally designed to prevent smuggling. Before 1816 this duty was entrusted to the revenue cutters, and to a body of “riding officers,” mounted men who were frequently supported by detachments of dragoons. The crews of the cutters and the riding officers were under the authority of the custom house in London, and were appointed by the treasury. On the conclusion of the war with Napoleon in 1815 it was resolved to take stricter precautions against smuggling. A “coast blockade” was established in Kent and Sussex. The “Ramillies” (74) was stationed in the Downs and the “Hyperion” (42) at Newhaven. A number of half-pay naval lieutenants were appointed to these vessels, but were stationed with detachments of men and boats at the Martello towers erected along the coast as a defence against French invasion. They were known as the “preventive