Page:EB1911 - Volume 08.djvu/346

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
DIVERS AND DIVING APPARATUS
329


Signal Line.—The diver’s signal line (sometimes called life line) consists of a length of reverse laid Manila rope. In cases where the telephone apparatus is not used, the diver gives his signals by means of a series of pulls on the signal line in accordance with a prearranged code.

Telephonic Apparatus.—Without doubt one of the most useful adjuncts to the modern diving apparatus is the loud-sounding telephone (fig. 4), introduced by Siebe, Gorman & Co., which enables the diver to communicate viva voce with his attendant, and vice versa. In the British navy the type of submarine telephonic apparatus used is the Graham-Davis system. This is made on two plans, (1) a single set of instruments, for communication between one diver and his attendant direct, (2) an intercommunication set which is used where two divers are employed. With this type the attendant can speak to No. 1 or No. 2 diver separately, or with both at the same time, and vice versa; and No. 1 can be put in communication with No. 2 whilst they are under water, the attendant at the surface being able to hear what the men are saying. The advantages of such a system are obvious. It is more particularly useful where two divers are working one either side of a ship, or where the divers may be engaged upon the same piece of work, but out of sight of one another, or out of touch. It would prove its utility in a marked degree in cases where a diver got into difficulties; a second diver sent down to his assistance could receive and give verbal directions and thus greatly expedite the work of rescue.

Fig. 4.—Diver’s Telephone Communication
with the Surface.
Q, Battery, with switch and bell in case.
R, Attendant’s receiver and transmitter.

The telephone instruments in the helmet consist of one or more loud-sounding receivers placed either in the crown of the helmet, or one on each side in close proximity to the diver’s ears. A transmitter of a special watertight pattern is placed between the front glass and one of the side glasses, and a contact piece, which, when the diver presses his chin against it, rings a bell at the surface, is fitted immediately below the front glass. A buzzer is sometimes fixed in the helmet to call the diver’s attention when the attendant wishes to speak, but as a rule the voice is transmitted so loudly that this device is unnecessary. A connexion, through which the insulated wires connecting the instruments pass, terminates in contact pieces, and the telephone cable, embedded in the diver’s signal line, is connected with it. The other end of the signal line is connected to a battery box at the surface. This box contains, besides the cells, a receiver and transmitter for the attendant, an electric bell, a terminal box, and a special switch, by means of which various communications between diver, or divers, and attendant are made. If, as is sometimes the case, the diver happens to be somewhat deaf, he can, whilst he is taking a message, stop the vibration of the outlet valve and the noise made by the escaping air, by merely pressing his finger on a spindle which passes through the disk of the valve, and thus momentarily ensure absolute silence.

Speaking Tube.—The rubber speaking tube which was the forerunner of the telephonic apparatus is now practically obsolete, though it is still used in isolated cases.

Submarine Electric Lamps.—Various forms of submarine lamps are used, from a powerful arc light to a self-contained hand lamp, the former giving about 2000 or 3000 candle-power, and requiring a steam-driven dynamo to supply the necessary current, the latter (fig. 5) giving a light of about 10 candle-power and having its own batteries, so that the diver carries both the light and its source in his hand. These submarine lamps are all constructed on the same principle, having the incandescent lamps, or carbons as the case may be, enclosed in a strong glass globe, the mechanism and connexions being fitted in a metal case above the globe, which is flanged and secured watertightly to the case.

Self-contained Diving Dress.—The object of the self-contained diving dress is to make the diver independent of air supply from the surface. The dress, helmet, boots and weights are of the ordinary pattern already described, but instead of obtaining his air supply by means of pumps and pipes, the diver is equipped with a knapsack consisting of a steel cylinder containing oxygen compressed to a pressure of 120 atmospheres (= about 1800 ℔) to the square inch, and chambers containing caustic soda or caustic potash. The helmet is connected to the chambers by tubes, and the oxygen cylinder is similarly connected to the chambers. The breath exhaled by the diver passes through a valve into the caustic soda, which absorbs the carbonic acid, and it is then again inhaled through another valve. This process of regeneration goes on automatically, the requisite amount of oxygen being restored to the breathed air in its passage through the chambers. This type of apparatus has been used for shallow water work, but the great majority of divers prefer the apparatus using pumps as the source of the air supply.

An emergency dress, using this self-contained system for breathing, has been designed by Messrs Fleuss and Davis, of the firm of Siebe, Gorman & Co., primarily as a life-saving apparatus, for enabling men to escape from disabled submarine boats.

Fig. 5.—Submarine Electric Lamp, with and without Reflector.

A, Metal case containing electrical fittings.
B, Glass globe and incandescent lamp.

C, Stand, which also protects the globe.
D, Ring for suspending lamp.
E, Reflector.

The helmet diver is indispensable in connexion with harbour and dock construction, bridge-building, pearl and sponge fishing, wreck raising and the recovery of sunken cargo and treasure. Every ship in the British navy carries one set or more of diving apparatus, for use in ease of emergency, for clearing fouled propellers, cleaning valves or ship’s hull below the water line, repairing hulls if necessary, and recovering lost anchors, chains, torpedoes, &c.

Greatest Depths attained.—The greatest depth at which useful work has been performed by a diver is 182 ft. From this depth a Spanish diver, Angel Erostarbe, recovered £9000 in silver bars from the wreck of the steamer “Skyro,” sunk off Cape Finisterre; Alexander Lambert succeeded in salving £70,000 from the Spanish mail steamer “Alphonso XII,” sunk in 162 ft. of water off Las Palmas, Grand Canary; W. Ridyard recovered £50,000 in silver dollars from the “Hamilton Mitchell,” sunk off Leuconna Reef, China, in 150 ft. There are individual cases where much larger sums have been recovered, but those mentioned are particularly notable by reason of the great depth involved and stand out as the greatest depths at which good work has been done. The sponge fishers of the Mediterranean work at a maximum depth of about 150 ft., and the pearl divers of Australia at 120 ft. But submarine operations on the great majority of the harbour and dock works of the world are conducted at a depth of from 30 to 60 ft.

The weighted tools employed by divers differ very little from those used by the workmen on terra firma. Pneumatic tools, worked by compressed air conveyed from the surface through flexible tubes, are great aids, particularly in rock removal work. With the rock drill the diver bores a number of holes to a given depth, inserts in these the charges of dynamite or other explosive used, attaches one end of a wire to a detonator which is inserted in the charge, and then comes to the surface. The boat from which he works is then moved away from the scene of operations, paying out the wire attached to the detonators, and when at a safe distance the free end of the wire is connected to a magneto exploding machine, which is then set in motion.

A complete set of diving apparatus costs from £75 to £200, varying with the depth of water for which it is required.

The pay of a diver depends upon the nature of the work upon which he is engaged, and also upon the depth of the water. On harbour and dock work the average wage is 2s. to 2s. 6d. per hour; on wreck work from 3s. to 5s. an hour, according to depth; on treasure and cargo recovery so much per day, with a percentage on the value recovered, generally about 5%. The pearl fishers of Australia get so much per ton of shell, and the sponge fishers are also paid by results.