Page:EB1911 - Volume 09.djvu/351

From Wikisource
Jump to navigation Jump to search
This page has been validated.
328 
EMBRYOLOGY
[HISTORY

of E. Selenka to Brazil and the East Indies (development of Marsupials, Primates and other mammals, 1877, 1889, 1892), of A. A. W. Hubrecht to the East Indies (1890, development of Tarsius), of W. H. Caldwell to Australia (1883–1884, discovery of the nature of the ovum and oviposition of Echidna and of Ceratodus), of A. Sedgwick to the Cape (1883, development of Peripatus), of J. Graham Kerr to Paraguay (1896, development of Lepidosiren), of R. Semon to Australia and the Malay Archipelago (1891–1893, development of Monotremata, Marsupialia), and of J. S. Budgett to Africa (1898, 1900, 1901, 1903, development of Polypterus).

In methods, while great improvements have been made in the processes of hardening and staining embryos, the principal advance has been the introduction in 1883 by W. H. Caldwell in his work on the development of Phoronis of the method of making tape-worm like strings of sections as a result of which the process of mounting in order all the sections obtained from an embryo was much facilitated, and the use of an automatic microtome rendered possible. The method of Golgi for the investigation of the nervous system, introduced in 1875, must also be mentioned here.

The word “coelom” (q.v.) was introduced into zoology by E. Haeckel in 1872 (Kalkschwämme, p. 468) as a convenient term for the body-cavity (pleuro-peritoneal). The word was generally adopted, and was applied alike to the blood-containing body-cavity of Arthropods and to the body-cavity of Vertebrata and segmented worms, in which there is no blood. In 1875 Huxley (Quarterly Journ. of Mic. Science, 15, p. 53), relying on the researches of Agassiz, Metschnikoff and Kowalewsky above mentioned, put forward the idea that according to their development three kinds of body-cavity ought to be distinguished: (1) the enterocoelic which arises from enteric diverticula, (2) the schizocoelic which develops as a split in the embryonic mesoblast, and (3) the epicoelic which was enclosed by folds of the skin and lined by ectoderm (e.g. atrial cavity of Tunicates, &c.). This suggestion was of great importance, because it led the embryologists of the day (Balfour, the brothers Hertwig, Lankester and others) to discuss the question as to whether there was not more than one kind of body-cavity. The Hertwigs (Coelomtheorie, Jena, 1881) distinguished two kinds, the enterocoel and the pseudocoel. The former, to which they limited the use of the word coelom, and which is developed directly or indirectly from the enteron, is found in Annelida, Arthropoda, Echinodermata, Chordata, &c. The latter they regarded as something quite different from the coelom and as arising by a split in what they called for the first time mesenchyme; the mesenchyme being the non-epithelial mesoderm, which they described as consisting of amoeboid cells, but which we now know to consist of a continuous reticulum. The next step was made by E. Ray Lankester, who in 1884 (Zoologischer Anzeiger) showed that the pericardium of Mollusca does not contain blood, and therein differs from the rest of the body-cavity which does contain blood, but no suggestion is made that the blood-containing space is not coelomic. In fact it was generally held by the anatomists of the day that the coelom and the vascular system were different parts of the same primitive organ, though separate from it in the adult except in Arthropoda and Mollusca. In the Mollusca, it is true, the pericardial part of the coelom was held to be separate from the vascular, and the Hertwigs had reached the correct conception that the pericardium of these animals was alone true coelom, the vascular part being pseudocoel. This was the state of morphological opinion until 1886, when it was shown (Proc. Cambridge Phil. Soc., 6, 1886, p. 27) (1) that the coelom of Peripatus gives rise to the nephridia and generative glands only, and to no other part of the body-cavity of the adult, (2) that the nephridia of the adult do not open as had been supposed into the body-cavity, (3) that the body-cavity is entirely formed of the blood-containing space, the coelom having no perivisceral portion. These results were extended by the same author (Quart. Journ. Mic. Sci., 27, 1887, pp. 486-540) to other Arthropods and to the Mollusca, and the modern theory of the coelom was finally established. An increased precision was given to the conception of coelom by the discovery in 1880 (Quart. Journ. Mic. Sci., 20, p. 164) that the nephridia of Elasmobranchs are a direct differentiation of a portion of it. In 1886 this was extended to Peripatus (Proc. Camb. Phil. Soc., 6, p. 27) and doubtless holds universally.

In 1864 it was suggested by V. Hensen (Virchow’s Archiv, 31) that the rudiments of nerve-fibres are present from the beginning of development as persistent remains of connexions between the incompletely separated cells of the segmented ovum. This suggestion fell to the ground because it was held by embryologists that the cleavage of the ovum resulted in the formation of completely separate cells, and that the connexions between the adult cells were secondary. In 1886 it was shown (Quarterly Journ. Mic. Sci., 26, p. 182) that in Peripatus Capensis the cells of the segmenting ovum do not separate from one another, but remain connected by a loose protoplasmic network. This discovery has since been extended to other ova, even to the small so-called holoblastic ova, and a basis of fact was found for Hensen’s suggestion as to the embryonic origin of nerves (Quart. Journ. Mic. Sci., 33, 1892, pp. 581-584). An extension and further application of the new views as to the cell-theory and the embryonic origin of nerves thus necessitated was made in 1894 (Quart. Journ. Mic. Sci., 37, p. 87), and in 1904 J. Graham Kerr showed that the motor nerves in the dipnoan fish Lepidosiren arise in an essentially similar manner (Trans. Roy. Society of Edinburgh, 41, p. 119).

In 1883 Elie Metschnikoff published his researches on the intracellular digestion of invertebrates (Arbeiten a. d. zoologischen Inst. Wien, 5; and Biologisches Centralblatt, 3, p. 560); these formed the basis of his theory of inflammation and phagocytosis, which has had such an important influence on pathology. As he himself has told us, he was led to make these investigations by his precedent researches on the development of sponges and other invertebrates. To quote his own words: “Having long studied the problem of the germinal layers in the animal series, I sought to give some idea of their origin and significance. The part played by the ectoderm and endoderm appeared quite clear, and the former might reasonably be regarded as the cutaneous investment of primitive multicellular animals, while the latter might be regarded as their organ of digestion. The discovery of intracellular digestion in many of the lower animals led me to regard this phenomenon as characteristic of those ancestral animals from which might be derived all the known types of the animal kingdom (excepting, of course, the Protozoa). The origin and part played by the mesoderm appeared the most obscure. Thus certain embryologists supposed that this layer corresponded to the reproductive organs of primitive animals: others regarded it as the prototype of the organs of locomotion. My embryological and physiological studies on sponges led me to the conclusion that the mesoderm must function in the hypothetically primitive animals as a mass of digestive cells, in all points similar to those of the endoderm. This hypothesis necessarily attracted my attention to the power of seizing foreign corpuscles possessed by the mesodermic cells” (Immunity in Infective Diseases, English translation, Cambridge, 1905).

The branch of embryology which concerns itself with the study of the origin, history and conjugation of the individuals (gametes) which are concerned in the reproduction of the species has made great advances. These began in 1875 and following years with a careful examination of the behaviour of the germinal vesicle in the maturation and fertilization of the ovum. The history of the polar bodies, the origin of the female pronucleus, the presence in the ovum of a second nucleus, the male pronucleus, which gave rise to the first segmentation nucleus by fusion with the female pronucleus, were discovered (E. van Beneden, O. Bütschli, O. Hertwig, H. Fol), and in 1876 O. Hertwig (Morphologisches Jahrbuch, 3, 1876) for the first time observed the entrance of a spermatozoon into the egg and the formation of the male pronucleus from it. The centrosome was discovered by W. Flemming in 1875 in the egg of the fresh-water mussel, and independently in 1876 by E. van Beneden in Dicyemids. In 1883 came E. van Beneden’s celebrated discovery (Arch.