Page:EB1911 - Volume 10.djvu/710

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
HISTORY]
FORTIFICATION AND SIEGECRAFT
  689


by French engineers in the latter part of the 18th century. The school of Mézières was afterwards replaced by that of Metz, which carried on its traditions. Such schools are necessarily conservative, and hence, in spite of the gradual improvement in ordnance and firearms, we find the main elements of the bastioned system remaining unchanged right up to the period of the Franco-German War in 1870. Chasseloup-Laubat tells us that, before the Revolution, to attempt novelties in fortification was to write one’s self down ignorant. How far the general form of the bastion with its outworks had become crystallized is evident from a cursory comparison of fig. 27 with Vauban’s early work. This figure is the front of the Metz school in 1822, by General Noizet.

Fig. 26.—Neu-Breisach.
Fig. 27.—Noizet.

Since, therefore, the official view was that the general outlines of the system were sacred, the efforts of orthodox engineers from Cormontaingne’s time onwards were given to improvements of detail, and mainly to retard breaching operations as long as possible. We find enormous pains being bestowed on the study of the comparative heights of the masonry walls and crest levels; with the introduction here and there of glacis slopes in the ditches, put in both to facilitate their defence and to protect portions of the escarps.

Among the unorthodox two names deserve mention. The first of these is Chasseloup-Laubat (q.v.), who served throughout the wars of the Republic and Empire, and constructed the fortress of Alessandria in Piedmont.

Chasseloup’s main proposals to improve the bastioned system were two:

First, in order to prevent the bastions from being breached through the gaps made by the ditch of the ravelin, he threw forward the ravelin and its keep outside the main glacis. This had the further advantage of giving great saliency to the ravelin for cross-fire over the terrain of the attack. On the other hand, it made the ravelin liable to capture by the gorge. It is probable that this system would have lent itself to a splendid defence by an able commander with a strong force; but under the opposite conditions it has a dangerous element of weakness.

Secondly, in order to get freedom to use longer fronts than those admissible for the ordinary bastioned trace, he proposed to extend his exterior side up to about 650 yds. and to break the faces of his bastions; the portion next the shoulder being defended from the flank of the collateral bastion and coinciding with the line of defence, and the portion next the salient, up to about 80 yds. in length, being defended from a central keep or caponier placed in front of the tenaille. The natural criticism of this arrangement is that it combines some of the defects of both the bastioned and polygonal systems without getting the full advantages of either.

Fig. 28.—Chasseloup-Laubat.

Fig. 28 shows a half front of Chasseloup’s system, of ordinary length, as actually constructed. The section shows an interesting detail, viz. the Chasseloup mask—a detached mask with tunnels for the casemate guns to fire through, the intention of which is to save them from being destroyed from a distance.

The second name is that of Captain Choumara of the French Engineers, born in 1787, whose work was published in 1827.