Page:EB1911 - Volume 11.djvu/271

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
258
FRUIT
  


of a spike of flowers, as in the fruit of the pine-apple (fig. 34), the bread-fruit and jack-fruit. Similarly the fruit of the mulberry represents a catkin-like inflorescence.

The syconus is an anthocarpous fruit, in which the receptacle completely encloses numerous flowers and becomes succulent. The fig (fig. 4) is of this nature, and what are called its seeds are the achenes of the numerous flowers scattered over the succulent hollowed receptacle. In Dorstenia the axis is less deeply hollowed, and of a harder texture, the fruit exhibiting often very anomalous forms.

The strobilus, or cone, is a seed-bearing spike, more or less elongated, covered with scales, each of which may be regarded as representing a separate flower, and has often two seeds at its base; the seeds are naked, no ovary being present. This fruit is seen in the cones of firs, spruces, larches and cedars, which have received the name of Coniferae, or cone-bearers, on this account. Cone-like fruit is also seen in most Cycadaceae. The scales of the strobilus are sometimes thick and closely united, so as to form a more or less angular and rounded mass, as in the cypress; while in the juniper they become fleshy, and are so incorporated as to form a globular fruit like a berry. The dry fruit of the cypress and the succulent fruit of the juniper have received the name of galbulus. In the hop the fruit is called also a strobilus, but in it the scales are thin and membranous, and the seeds are not naked but are contained in pericarps.


Fig. 32.


Fig. 33.

Fig. 34.
Fig. 32.—Honesty (Lunaria biennis), showing the septum after the carpels have fallen away.

From Strasburger’s Lehrbuch der Botanik, by permission of Gustav Fischer.

Fig. 33.—Silicula or pouch of shepherd’s purse (Capsella), opening by two folded valves, which separate from above downwards. The partition is narrow, hence the silicula is angustiseptal.

From Strasburger’s Lehrbuch der Botanik, by permission of Gustav Fischer.

Fig. 34.—Fruit of the pine-apple (Ananassa sativa), developed from a spike of numerous flowers with bracts, united so as to form a collective or anthocarpous fruit. The crown of the pine-apple, c, consists of a series of empty bracts prolonged beyond the fruit.

The same causes which produce alterations in the other parts of the flower give rise to anomalous appearances in the fruit. The carpels, in place of bearing seeds, are sometimes changed into leaves, with lobes at their margins. Leaves are sometimes produced from the upper part of the fruit. In the genus Citrus, to which the orange and lemon belong, it is very common to meet with a separation of the carpels, so as to produce what are called horned oranges and fingered citrons. In this case a syncarpous fruit has a tendency to become apocarpous. In the orange we occasionally find a supernumerary row of carpels produced, giving rise to the appearance of small and imperfect oranges enclosed within the original one; the navel orange is of this nature. It sometimes happens that, by the union of flowers, double fruits are produced. Occasionally a double fruit is produced, not by the incorporation of two flowers, but by the abnormal development of a second carpel in the flower.


Arrangement of Fruits.

A.  True fruits—developed from the ovary alone.
1.  Pericarp not fleshy or fibrous.
i.  Indehiscent—not opening to allow the escape of the seeds—generally one-seeded. Achene; caryopsis; cypsela; nut; schizocarp.
ii.  Dehiscent—the pericarp splits to allow the escape of the seeds—generally many-seeded. Follicle; legume; siliqua; capsule.
2.  Pericarp generally differentiated into distinct layers, one of which is succulent or fibrous. Drupe; berry.
B.  Pseudocarps—the development extends beyond the ovary. Pome; syconus; sorosis.

The Seed.—The seed is formed from the ovule as the result of fertilization. It is contained in a seed-vessel formed from the ovary in the plants called angiospermous; while in gymnospermous plants, such as Coniferae and Cycadaceae, it is naked, or, in other words, has no true pericarp. It sometimes happens in Angiosperms, that the seed-vessel is ruptured at an early period of growth, so that the seeds become more or less exposed during their development; this occurs in mignonette, where the capsule opens at the apex, and in Cuphea, where the placenta bursts through the ovary and floral envelopes, and appears as an erect process bearing the young seeds. After fertilization the ovule is greatly changed, in connexion with the formation of the embryo. In the embryo-sac of most Angiosperms (q.v.) there is a development of cellular tissue, the endosperm, more or less filling the embryo-sac. In Gymnosperms (q.v.) the endosperm is formed preparatory to fertilization. The fertilized egg enlarges and becomes multicellular, forming the embryo. The embryo-sac enlarges greatly, displacing gradually the surrounding nucellus, which eventually forms merely a thin layer around the sac, or completely disappears. The remainder of the nucellus and the integuments of the ovules form the seed-coats. In some cases (fig. 35) a delicate inner coat or tegmen can be distinguished from a tougher outer coat or testa; often, however, the layers are not thus separable. The consistency of the seed-coat, its thickness, the character of its surface, &c., vary widely, the variations being often closely associated with the environment or with the means of seed-dispersal. An account of the development of the seed from the ovule will be found in the article Angiosperms. When the pericarp is dehiscent the seed-covering is of a strong and often rough character; but when the pericarp is indehiscent and encloses the seed for a long period, the outer seed-coat is thin and soft. The cells of the testa are often coloured, and have projections and appendages of various kinds. Thus in Abrus precatorius and Adenanthera pavonina it is of a bright red colour; in French beans it is beautifully mottled; in the almond it is veined; in the tulip and primrose it is rough; in the snapdragon it is marked with depressions; in cotton and Asclepias (fig. 36) it has hairs attached to it; and in mahogany, Bignonia, and the pines and firs it is expanded in the form of wing-like appendages (fig. 37). In Collomia, Acanthodium, Cobaea scandens and other seeds, it contains spiral cells, from which, when moistened with water, the fibres uncoil in a beautiful manner; and in flax (Linum) and others the cells are converted into mucilage. These structural peculiarities of the testa in different plants have relation to the scattering of the seed and its germination upon a suitable nidus. But in some plants the pericarps assume structures which subserve the same purpose; this especially occurs in small pericarps enclosing single seeds, as achenes, caryopsides, &c. Thus in Compositae and valerian, the pappose limb of the calyx forms a parachute to the pericarp; in Labiatae and some Compositae spiral cells are formed in the epicarp; and the epicarp is prolonged as a wing in Fraxinus (fig. 1) and Acer (fig. 21).


Fig. 35.

Fig. 36.
Fig. 35.—Seed of Pea (Pisum) with one cotyledon removed. c, Remaining cotyledon; ch, chalaza-point at which the nourishing vessels enter; e, tegmen or inner coat; f, funicle or stalk; g, plumule of embryo; m, micropyle; pl, placenta; r, radicle of embryo; t, tigellum or stalk between root and plumule; te, testa.
Fig. 36.—Seed of Asclepias, with a cluster of hairs arising from the edges of the micropyle.

Sometimes there is an additional covering to the seed, formed after fertilization, to which the name arillus has been given (fig. 38). This is seen in the passion-flower, where the covering arises from the placenta or extremity of the funicle at the base of the ovule and passes upwards towards the apex, leaving the micropyle uncovered. In the nutmeg and spindle tree this additional coat is formed from above downwards, constituting in the former case a laciniated scarlet covering called mace. In such instances it has been called an arillode (fig. 39). This arillode, after growing downwards, may be reflected upwards so as to cover the micropyle. The fleshy scarlet covering formed around the naked seed in the yew is by some considered of the nature of an aril. On the testa, at various points, there are produced at times other cellular bodies, to which the name of strophioles, or caruncles, has been given, the seeds being strophiolate or carunculate. These tumours may occur near the base of the seed, as in Polygala, or at the apex, as in Castor-oil plant (Ricinus); or they may occur in the course of the raphe, as in blood-root (Sanguinaria) and Asarabacca. The funicles of the ovules frequently attain a great length in the seed, and in some magnolias, when the fruit dehisces, they appear as long scarlet cords suspending the seeds outside. The hilum or umbilicus of the seed is usually