Page:EB1911 - Volume 11.djvu/291

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
278  
FUEL


labour to manage them, is all that is necessary for the transit and combustion of petroleum fuel; and it is certain that even in England will be found places which, from topographical and other circumstances, will use petroleum more economically than coal as fuel for manufacturing purposes under reasonable conditions of price for the fuel.

Fig. 2.—Rusden and Eeles Burner.

The theoretical calorific value of oil fuel is more nearly realized in practice than the theoretical calorific value of coal, because the facilities for complete combustion, due to the artificial admixture of the air by the atomizing process, are greater in the case of oil than coal, and for this reason, among others, the practical evaporative results are proportionately higher with liquid fuel. In some cases the work done in a steam-engine by 2 tons of coal has been performed by 1 ton of oil fuel, but in others the proportions have been as 3 to 2, and these latter can be safely relied on in practice as a minimum. This saving, combined with the savings of labour and transit already explained, will in the near future make the use of liquid fuel compulsory, except in places so near to coal-fields that the cost of coal becomes sufficiently low to counterbalance the savings in weight of fuel consumed and in labour in handling it. In some locomotives on the Great Eastern railway the consumption of oil and coal for the same development of horse-power was as 17 ℔ oil is to 35 ℔ coal; all, however, did not realize so high a result.

The mechanical apparatus for applying petroleum to steam-raising in locomotives is very simple. The space in the tender usually occupied by coal is closed up by steel-plating closely riveted and tested, so as to form a storage tank. From this tank a feed-pipe is led to a burner of the combined steam-and-oil Liquid fuel in locomotives. type already indicated, and this burner is so arranged as to enter a short distance inside the furnace mouth. The ordinary fire-bars are covered with a thin layer of coal, which starts the ignition in the first place, and the whole apparatus is ready for work. The burner best adapted for locomotive practice is the Holden Burner (fig. 1), which was used on the Great Eastern railway. The steam-pipe is connected at A, the oil-pipe at B, and the hand-wheels C and D are for the adjustment of the internal orifices according to the rate of combustion required. The nozzle E is directed towards the furnace, and the external ring FF, supplied by the small pipe G and the by-pass valve H, projects a series of steam jets into the furnace, independent of the injections of atomized fuel, and so induces an artificial inrush of air for the promotion of combustion. This type of burner has also been tried on stationary boilers and on board ship. It works well, although the great consumption of steam by the supplementary ring is a difficulty at sea, where the water lost by the consumption of steam cannot easily be made up.

Although the application of the new fuel for land and locomotive boilers has already been large, the practice at sea has been far more extensive. The reason is chiefly to be found in the fact that although the sources of supply are at a distance from Great Britain, yet they are in Liquid fuel at sea. countries to whose neighbourhood British steamships regularly trade, and in which British naval squadrons are regularly stationed, so that the advantages of adopting liquid fuel have been more immediate and the economy more direct. The certainty of continuous supply of the fuel and the wide distribution of storage stations have so altered the conditions that the general adoption of the new fuel for marine purposes becomes a matter of urgency for the statesman, the merchant and the engineer. None of these can afford to neglect the new conditions, lest they be noted and acted upon by their competitors. Storage for supply now exists at a number of sea ports: London, Barrow, Southampton, Amsterdam, Copenhagen, New Orleans, Savannah, New York, Philadelphia, Singapore, Hong Kong, Madras, Colombo, Suez, Hamburg, Port Arthur, Rangoon, Calcutta, Bombay, Alexandria, Bangkok, Saigon, Penang, Batavia, Surabaya, Amoy, Swatow, Fuchow, Shanghai, Hankow, Sydney, Melbourne, Adelaide, Zanzibar, Mombasa, Yokohama, Kobe and Nagasaki; also in South African and South American ports.

Fig. 3.—Storage of Liquid Fuel on Oil-carrying Steamers (Flannery-Boyd System).

The British admiralty have undertaken experiments with liquid fuel at sea, and at the same time investigations of the