Page:EB1911 - Volume 11.djvu/525

From Wikisource
Jump to navigation Jump to search
This page has been validated.
STREPTONEURA]
GASTROPODA
  507


reversal of the cleavage planes in sinistral as compared with dextral forms. The facts, however, strongly suggest that the original cause of the torsion was the weight of the exogastric shell and visceral hump, which in an animal creeping on its ventral surface necessarily fell over to one side. It is not certain that the projection of the spire to the originally left side of the shell has anything to do with the falling over of the shell to that side. The facts do not support such a suggestion. In the larva there is no projection at the time the torsion takes place. In some forms the coiling disappears in the adult, leaving the shell simply conical as in Patellidae, Fissurellidae, &c., and in some cases the shell is coiled in one plane, e.g. Planorbis. In all these cases the torsion and asymmetry of the body are unaffected.

The characteristic torsion attains its maximum effect among the majority of the Streptoneura. It is followed in some specialized Heteropoda and in the Euthyneura by a torsion in the opposite direction, or detorsion, which brings the anus farther back and untwists the visceral commissure (see Euthyneura, below). This conclusion has shown that the Euthyneura do not represent an archaic form of Gastropoda, but are themselves derived from streptoneurous forms. The difference between the two sub-classes has been shown to be slight; certain of the more archaic Tectibranchia (Actaeon) and Pulmonata (Chilina) still have the visceral commissure long and not untwisted. The fact that all the Euthyneura are hermaphrodite is not a fundamental difference; several Streptoneura are so, likewise Valvata, Oncidiopsis, Marsenina, Odostomia, Bathysciadium, Entoconcha.

Classification.—The class Gastropoda is subdivided as follows:

Sub-class I. Streptoneura.
Order 1. Aspidobranchia.
Sub-order 1. Docoglossa.
Sub-order 2. Rhipidoglossa.
Order 2. Pectinibranchia.
Sub-order 1. Taenioglossa.
Tribe 1. Platypoda.
Tribe 2. Heteropoda.
Sub-order 2. Stenoglossa.
Tribe 1. Rachiglossa.
Tribe 2. Toxiglossa.
Sub-class II. Euthyneura.
Order 1. Opisthobranchia.
Sub-order 1. Tectibranchia.
Tribe 1. Bullomorpha.
Tribe 2. Aplysiomorpha.
Tribe 3. Pleurobranchomorpha.
Sub-order 2. Nudibranchia.
Tribe 1. Tritoniomorpha.
Tribe 2. Doridomorpha.
Tribe 3. Eolidomorpha.
Tribe 4. Elysiomorpha.
Order 2. Pulmonata.
Sub-order 1. Basommatophora.
Sub-order 2. Stylommatophora.
Tribe 1. Holognatha.
Tribe 2. Agnatha.
Tribe 3. Elasmognatha.
Tribe 4. Ditremata.

Sub-Class I.—Streptoneura

In this division the torsion of the visceral mass and visceral commissure is at its maximum, the latter being twisted into a figure of eight. The right half of the commissure with its ganglion is supra-intestinal, the left half with its ganglion infra-intestinal. In some cases each pleural ganglion is connected with the opposite branch of the visceral commissure by anastomosis with the pallial nerve, a condition which is called dialyneury; or there may be a direct connective from the pleural ganglion to the visceral ganglion of the opposite side, which is called zygoneury. The head bears only one pair of tentacles. The radular teeth are of several different kinds in each transverse row. The heart is usually posterior to the branchia (proso-branchiate). The sexes are usually separate.

The old division into Zygobranchia and Azygobranchia must be abandoned, for the Azygobranchiate Rhipidoglossa have much greater affinity to the Zygobranchiate Haliotidae and Fissurellidae than to the Azygobranchia in general. This is shown by the labial commissure and pedal cords of the nervous system, by the opening of the gonad into the right kidney, and by other points. Further, the Pleurotomariidae have been discovered to possess two branchiae. The sub-class is now divided into two orders: the Aspidobranchia in which the branchia or ctenidium is bipectinate and attached only at its base, and the Pectinibranchia in which the ctenidium is monopectinate and attached to the mantle throughout its length.

Fig. 4.—The Common Limpet (Patella vulgata) in its shell, seen from the pedal surface. (Lankester.)

x, y, The median antero-posterior axis.

a, Cephalic tentacle.

b, Plantar surface of the foot.

c, Free edge of the shell.

d, The branchial efferent vessel carrying aerated blood to the auricle, and here interrupting the circlet of gill lamellae.

e, Margin of the mantle-skirt.

f, Gill lamellae (not ctenidia, but special pallial growths, comparable with those of Pleurophyllidia).

g, The branchial efferent vessel.

h, Factor of the branchial advehent vessel.

i, Interspaces between the muscular bundles of the root of the foot, causing the separate areae seen in fig. 5, c.

 
Fig. 5.—Dorsal surface of the Limpet removed from its shell and deprived of its black pigmented epithelium; the internal organs are seen through the transparent body-wall. (Lankester.)
c, Muscular bundles forming the root of
 the foot, and adherent to the shell.
e, Free mantle-skirt.
em, Tentaculiferous margin of the same.
i, Smaller (left) nephridium.
k, Larger (right) nephridium.
l, Pericardium.
lx, Fibrous septum, behind the
 pericardium.
n, Liver.
int, Intestine.
ecr, Anterior area of the mantle-skirt over-
 hanging the head (cephalic hood).

Order I. Aspidobranchia.—These are the most primitive Gastropods, retaining to a great degree the original symmetry of the organs of the pallial complex, having two kidneys, in some cases two branchiae, and two auricles. The gonad has no accessory organs and except in Neritidae no duct, but discharges into the right kidney.

Forms adapted to terrestrial life and to aerial respiration occur in various divisions of Gastropods, and do not constitute a single homogeneous group. Thus the Helicinidae, which are terrestrial, are now placed among the Aspidobranchia. In these there are neither branchia nor osphradium, and the pallial chamber which retains its large opening serves as a lung. Degeneration of the shell occurs in some members of the order. It is largely covered by the mantle in some Fissurellidae, is entirely internal in Pupilia and absent in Titiscaniidae.

The common limpet is a specially interesting and abundant example of the more primitive Aspidobranchia. The foot of the limpet is a nearly circular disk of muscular tissue; in front, projecting from and raised above it, are the head and neck (figs. 4, 13). The visceral hump forms a low conical dome above the sub-circular foot, and standing out all round the base of this dome so as completely to overlap the head and foot, is the circular mantle-skirt. The depth of free mantle-skirt is greatest in front, where the head and neck are covered in by it. Upon the surface of the visceral dome, and extending