Page:EB1911 - Volume 11.djvu/655

From Wikisource
Jump to navigation Jump to search
This page has been validated.
PRINCIPLES]
GEOGRAPHY
  635


The classification of the land surface into areas inhabited by distinctive groups of plants has been attempted by many phytogeographers, but without resulting in any scheme of general acceptance. The simplest classification is perhaps that of Drude according to climatic zones, subdividedFloral zones. according to continents. This takes account of—(1) the Arctic-Alpine zone, including all the vegetation of the region bordering on perpetual snow; (2) the Boreal zone, including the temperate lands of North America, Europe and Asia, all of which are substantially alike in botanical character; (3) the Tropical zone, divided sharply into (a) the tropical zone of the New World, and (b) the tropical zone of the Old World, the forms of which differ in a significant degree; (4) the Austral zone, comprising all continental land south of the equator, and sharply divided into three regions the floras of which are strikingly distinct—(a) South American, (b) South African and (c) Australian; (5) the Oceanic, comprising all oceanic islands, the flora of which consists exclusively of forms whose seeds could be drifted undestroyed by ocean currents or carried by birds. To these might be added the antarctic, which is still very imperfectly known. Many subdivisions and transitional zones have been suggested by different authors.

From the point of view of the economy of the globe this classification by species is perhaps less important than that by mode of life and physiological character in accordance with environment. The following are the chief areas of vegetational activity usually recognized: (1) The ice-desertsVegetation areas. of the arctic and antarctic and the highest mountain regions, where there is no vegetation except the lowest forms, like that which causes “red snow.” (2) The tundra or region of intensely cold winters, forbidding tree-growth, where mosses and lichens cover most of the ground when unfrozen, and shrubs occur of species which in other conditions are trees, here stunted to the height of a few inches. A similar zone surrounds the permanent snow on lofty mountains in all latitudes. The tundra passes by imperceptible gradations into the moor, bog and heath of warmer climates. (3) The temperate forests of evergreen or deciduous trees, according to circumstances, which occupy those parts of both temperate zones where rainfall and sunlight are both abundant. (4) The grassy steppes or prairies where the rainfall is diminished and temperatures are extreme, and grass is the prevailing form of vegetation. These pass imperceptibly into—(5) the arid desert, where rainfall is at a minimum, and the only plants are those modified to subsist with the smallest supply of water. (6) The tropical forest, which represents the maximum of plant luxuriance, stimulated by the heaviest rainfall, greatest heat and strongest light. These divisions merge one into the other, and admit of almost indefinite subdivision, while they are subject to great modifications by human interference in clearing and cultivating. Plants exhibit the controlling power of environment to a high degree, and thus vegetation is usually in close adjustment to the bolder geographical features of a region.

The divisions of the earth into faunal regions by Dr P. L. Sclater have been found to hold good for a large number of groups of animals as different in their mode of life as birds and mammals, and they may thus be accepted as based on nature. They are six in number: (1) Palaearctic, includingFaunal realms. Europe, Asia north of the Himalaya, and Africa north of the Sahara; (2) Ethiopian, consisting of Africa south of the Atlas range, and Madagascar; (3) Oriental, including India, Indo-China and the Malay Archipelago north of Wallace’s line, which runs between Bali and Lombok; (4) Australian, including Australia, New Zealand, New Guinea and Polynesia; (5) Nearctic or North America, north of Mexico; and (6) Neotropical or South America. Each of these divisions is the home of a special fauna, many species of which are confined to it alone; in the Australian region, indeed, practically the whole fauna is peculiar and distinctive, suggesting a prolonged period of complete biological isolation. In some cases, such as the Ethiopian and Neotropical and the Palaearctic and Nearctic regions, the faunas, although distinct, are related, several forms on opposite sides of the Atlantic being analogous, e.g. the lion and puma, ostrich and rhea. Where two of the faunal realms meet there is usually, though not always, a mixing of faunas. These facts have led some naturalists to include the Palaearctic and Nearctic regions in one, termed Holarctic, and to suggest transitional regions, such as the Sonoran, between North and South America, and the Mediterranean, between Europe and Africa, or to create sub-regions, such as Madagascar and New Zealand. Oceanic islands have, as a rule, distinctive faunas and floras which resemble, but are not identical with, those of other islands in similar positions.

The study of the evolution of faunas and the comparison of the faunas of distant regions have furnished a trustworthy instrument of pre-historic geographical research, which enables earlier geographical relations of land and sea to be traced out, and the approximate period, or at least theBiological distribution as a means of geographical research. chronological order of the larger changes, to be estimated. In this way, for example, it has been suggested that a land, “Lemuria,” once connected Madagascar with the Malay Archipelago, and that a northern extension of the antarctic land once united the three southern continents.

The distribution of fossils frequently makes it possible to map out approximately the general features of land and sea in long-past geological periods, and so to enable the history of crustal relief to be traced.[1]

While the tendency is for the living forms to come into harmony with their environment and to approach the state of equilibrium by successive adjustments if the environment should happen to change, it is to be observed that the action of organisms themselves often tends to change theirReaction of organisms on environment. environment. Corals and other quick-growing calcareous marine organisms are the most powerful in this respect by creating new land in the ocean. Vegetation of all sorts acts in a similar way, either in forming soil and assisting in breaking up rocks, in filling up shallow lakes, and even, like the mangrove, in reclaiming wide stretches of land from the sea. Plant life, utilizing solar light to combine the inorganic elements of water, soil and air into living substance, is the basis of all animal life. This is not by the supply of food alone, but also by the withdrawal of carbonic acid from the atmosphere, by which vegetation maintains the composition of the air in a state fit for the support of animal life. Man in the primitive stages of culture is scarcely to be distinguished from other animals as regards his subjection to environment, but in the higher grades of culture the conditions of control and reaction become much more complicated, and the department of anthropogeography is devoted to their consideration.

The first requisites of all human beings are food and protection, in their search for which men are brought into intimate relations with the forms and productions of the earth’s surface. The degree of dependence of any people upon environment varies inversely as the degree of culture or civilization,Anthropo-
geography.
which for this purpose may perhaps be defined as the power of an individual to exercise control over the individual and over the environment for the benefit of the community. The development of culture is to a certain extent a question of race, and although forming one species, the varieties of man differ in almost imperceptible gradations with a complexity defying classification (see Anthropology). Professor Keane groups man round four leading types, which may be named the black, yellow, red and white, or the Ethiopic, Mongolic, American and Caucasic. Each may be subdivided, though not with great exactness, into smaller groups, either according to physical characteristics, of which the form of the head is most important, or according to language.

The black type is found only in tropical or sub-tropical countries, and is usually in a primitive condition of culture, unless educated by contact with people of the white type. They follow the most primitive forms of religion (mainly fetishism), live on products of the woods or of the chase, with theTypes of man. minimum of work, and have only a loose political organization. The red type is peculiar to America, inhabiting every climate from polar to equatorial, and containing representatives of many stages of culture which had apparently developed without the aid or interference of people of any other race until the close of the 15th century. The yellow type is capable of a higher culture, cherishes higher religious beliefs, and inhabits as a rule the temperate zone, although extending to the tropics on one side and to the arctic regions on the other. The white type, originating in the north temperate zone, has spread over the whole world. They have attained the highest culture, profess the purest forms of monotheistic religion, and have brought all the people of the black type and many of those of the yellow under their domination.

The contrast between the yellow and white types has been softened by the remarkable development of the Japanese following the assimilation of western methods.

The actual number of human inhabitants in the world has been calculated as follows:

  By Continents[2]     By Race[3]
Asia 875,000,000   White (Caucasic) 770,000,000
Europe 392,000,000   Yellow (Mong) 540,000,000
Africa 170,000,000   Black (Ethiopic) 175,000,000
America 143,000,000   Red (American) 22,000,000
Australia and Polynesia 7,000,000 

   Total 1,507,000,000
Total 1,587,000,000 


In round numbers the population of the world is about 1,600,000,000, and, according to an estimate by Ravenstein,[4] the maximum population which it will be possible for the earth to maintain is 6000 millions, a number which, if the average rate of increase in 1891 continued, would be reached within 200 years.

While highly civilized communities are able to evade many of the restrictions of environment, to overcome the barriers to intercommunication interposed by land or sea, to counteract the adverse

  1. See particularly A. de Lapparent, Traité de géologie (4th ed., Paris, 1900).
  2. Estimate for 1900. H. Wagner, Lehrbuch der Geographie, i. p.658.
  3. Estimate for year not stated. A. H. Keane in International Geography, p. 108.
  4. In Proc. R.G.S. xiii. (1891) p. 27.