Page:EB1911 - Volume 13.djvu/770

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
GARDEN STRUCTURES]
HORTICULTURE
751


12 to 14 ft. wide, by 10 to 12 ft. high, and of any convenient length. Heating is effected by means of hot-water pipes below the beds, and against the side ventilators. The walls bordering the central paths are arched or clotted to admit heat from the chambers below the beds. Side pipes are occasionally dispensed with, heat being obtained by means of slots at the back of the beds, communicating with the chambers. The beds are also of use for plunging pot plants. Ventilation is provided at sides and top.

Pits and frames of various kinds are frequently used for the cultivation of cucumbers and melons, as well as hot beds covered by ordinary garden frames. In these cases the first supply of heat is derived from the hot bed made up within the pit. When the heat of the original bed subsides, linings of fermenting dung must be added, and these must be kept active by occasional turnings and the addition of fresh material as often as required. It is better, however, to effect both top and bottom heating by hot-water pipes.

Orchard Houses are span-roofed or lean-to structures, in which various fruits are cultivated without the aid of artificial heat. Peaches, nectarines, apricots, cherries and the more tender varieties of plums and pears succeed well in houses of this kind. The types of houses in general use are substantially as shown in fig. 7, for span-roofed, and as fig. 5, for lean-to; in each case without the heating apparatus. The orchard house is among the most generally useful of all garden structures. These houses require careful management in early summer so as to induce the more delicate varieties of peaches and nectarines to complete and ripen their growth before cold, sunless weather sets in.

In commercial establishments where utility is of more importance than ornament, the glass houses and hot water apparatus are not of so elaborate a type as indicated in the foregoing remarks, and in many cases excellent produce is grown in structures more or less dilapidated. In some places movable greenhouses have been erected for market purposes, so that the soil may be exposed to the sweetening effect of the weather, when the glass roof is moved to an adjoining patch.

Fig. 10.—Ventilated Plant Pit.

Pits and Frames.—These are used both for the summer growth and winter protection of various kinds of ornamental plants, for the growth of such fruits as cucumbers, melons and strawberries, and for the forcing of vegetables. When heat is required, it is sometimes supplied by means of fermenting dung, or dung and leaves, or tanner’s bark, but it is much more economically provided by hot-water pipes. Pits of many different forms have been designed, but it may be sufficient here to describe one or two which can be recommended for general purposes.

An excellent pit for wintering bedding-out plants or young greenhouse stock is shown at fig. 10. It is built upon the pigeon-hole principle as high as the ground level a, a, and above that in 9-in. brickwork. At a distance of 9 in. retaining walls b, b are built up to the ground level, and the spaces between the two are covered by thick boarding, which is to be shut down as shown at c in cold weather to exclude frost, and opened as shown at d in mild weather to promote a free circulation of air through the pit. The height of the pit might be reduced according to the size of the plants; and, to secure the interior against frost, flow and return hot-water pipe e should pass along beneath the staging, which should be a strong wooden trellis supported by projections in the brickwork. The water which drains from the plants or is spilt in watering would fall on the bottom, which should be made porous to carry it away. For many plants this under current of ventilation would be exceedingly beneficial, especially when cold winds prevented the sashes from being opened. A pit of this character may be sunk into the ground deeper than is indicated in the figure if the subsoil is dry and gravelly, bat in the case of a damp subsoil it should rather be more elevated, as the soil could easily be sloped up to meet the retaining wall.

Fig. 11.—Hot-Bed Three-Light Frame.

Frames.—Frames (fig. 11) should be made of the best red deal, 11/4 in. thick. A convenient size is 6 ft. wide, 24 in. high at the back and 15 in front; and they are usually 12 ft. long, which makes three lights and sashes, though they can be made with two lights or one light for particular purposes. Indeed, a one-light frame is often found very convenient for many purposes. The lights should be 2 in. thick, and glazed with 21 oz. sheet glass, in broad panes four or five to the breadth of a light, and of a length which will work in conveniently and economically, very long panes being undesirable from the havoc caused by accidents, and very short ones being objectionable as multiplying the chances of drip, and the exclusion of light by the numerous lappings; panes about 12 in. long are of convenient size for garden lights of this character. In all gardens the frames and lights should be of one size so as to be interchangeable, and a good supply of extra lights (sashes) may always be turned to good account for various purposes.

Fig. 12.—Span-Roof Frame.

Span-roof garden frame (fig. 12) may under some circumstances be useful as a substitute for the three-light frame. It is adapted for storing plants in winter, for nursing small plants in summer and for the culture of melons and other crops requiring glass shelter. These frames are made 11 in. high in front, 22 at the back and 32 at the ridge, with ends of 11/2-in. red deal; the sashes, which are 2 in. thick, open by gearing, the front and back separately. The lights are hinged so that they can be turned completely back when necessary. This more direct and ready access to the plants within is one of the principal recommendations of this form of pit.

Fig. 13.—Lean-to Mushroom House.

Mushroom House.—Mushrooms may be grown in sheds and cellars, or even in protected ridges in the open ground, but a special structure is usually devoted to them. A lean-to against the north side of the garden wall will be found suitable for the purpose, though a span-roofed form may also be adopted, especially if the building stands apart.

The internal arrangement of a lean-to mushroom house is shown in fig. 13. The length may vary from 30 ft. to 60 ft.; a convenient width is 10 ft., which admits of a 31/2 ft. central path, and beds 3 ft. wide on each side. The shelves should be of slate a, a, supported by iron uprights b, b, each half having a front ledge of bricks set on edge in cement c, c. The slabs of slate forming the shelves should not be too closely fitted, as a small interval will prevent the accumulation of moisture at the bottom of the bed. They may be supported by iron standards or brick piers, back and front, bearing up a flat bar of iron on which the slates may rest; the use of the bar will give wider intervals between the supports, which will be found convenient for filling and emptying the beds. The roof may be tiled or slated; but, to prevent the injurious influence of hot sun, there should be an inner roof or ceiling d, the space between which and the outer roof e should be packed with sawdust. A hot-water pipe f should run along both sides of the pathway, close to the front ledge of the lowest beds. The different shelves can be planted in succession; and the lower ones, especially those on the floor level, as being most convenient, can be utilized for forcing sea-kale and rhubarb.

The Fruit Room.—This important store should be dark, moderately dry, with a steady, moderately cool atmosphere,