Page:EB1911 - Volume 14.djvu/159

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
AND ONTOGENY]
HYDROMEDUSAE
147


space which is crescentic or horse-shoe-like in section. Next tentacles (t, fig. 44, F) grow out from the ring-canal, and the double plate of ectoderm on the distal side of the entocodon becomes perforated, leaving a circular rim composed of two layers of ectoderm, the velum (v) of the medusa. Finally, a mouth is formed by breaking through at the apex of the manubrium, and the now fully-formed medusa becomes separated by rupture of the stalk of the bud and swims away.

Fig. 46.—Diagrams to show the significance of the Entocodon in Medusa-buds. (Modified from a diagram given by A. Weismann.)

I, Ideally primitive method of budding, in which the mouth is formed first (Ia), next the tentacles (Ib), and lastly the umbrella.
II, Method. of Cunina; (a) the mouth arises, next the umbrella (b), and lastly the tentacles (c).
III,  Hypothetical transition from II to the indirect method with an entocodon; the formation of the manubrium is retarded, that of the umbrella hastened (IIIa, b).
IV,  a, b, c, budding with an entocodon (cf. fig. 44).
V, Budding with a solid entocodon (cf. fig. 45).

If the bud, however, is destined to give rise not to a free medusa, but to a gonophore, the development is similar but becomes arrested at various points, according to the degree to which the gonophore is degenerate. The entocodon is usually formed, proving the medusoid nature of the bud, but in sporosacs the entocodon may be rudimentary or absent altogether. The process of budding as above described may be varied or complicated in various ways; thus a secondary, amnion-like, ectodermal covering or ectotheca (fig. 45, C, ect.) may be formed over all, as in Garveia, &c.; or the entocodon may remain solid and without cavity until after the formation of the manubrium, or may never acquire a cavity at all, as described above for the gonophores.

Phylogenetic Significance of the Entocodon.—It is seen from the foregoing account of medusa-budding that the entocodon is a very important constituent of the bud, furnishing some of the most essential portions of the medusa; its cavity becomes the sub-umbral cavity, and its lining furnishes the ectodermal epithelium of the manubrium and of the sub-umbral cavity as far as the edge of the velum. Hence the entocodon represents a precocious formation of the sub-umbral surface, equivalent to the peristome of the polyp, differentiated in the bud prior to other portions of the organism which must be regarded as antecedent to it in phylogeny.

If the three principal organ-systems of the medusa, namely mouth, tentacles and umbrella, be considered in the light of phylogeny, it is evident that the manubrium bearing the mouth must be the oldest, as representing a common property of all the Coelentera, even of the gastrula embryo of all Enterozoa. Next in order come the tentacles, common to all Cnidaria. The special property of the medusa is the umbrella, distinguishing the medusa at once from other morphological types among the Coelentera. If, therefore, the formation of these three systems of organs took place according to a strictly phylogenetic sequence, we should expect them to appear in the order set forth above (fig. 46, Ia, b, c). The nearest approach to the phylogenetic sequence is seen in the budding of Cunina, where the manubrium and mouth appear first, but the umbrella is formed before the tentacles (fig. 46, IIa, b, c). In the indirect or coenogenetic method of budding, the first two members of the sequence exhibited by Cunina change places, and the umbrella is formed first, the manubrium next, and then the tentacles; the actual mouth-perforation being delayed to the very last (fig. 46, IVa, b, c). Hence the budding of medusae exemplifies very clearly a common phenomenon in development, a phylogenetic series of events completely dislocated in the ontogenetic time-sequence.

The entocodon is to be regarded, therefore, not as primarily an ingrowth of ectoderm, but rather as an upgrowth of both body-layers, in the form of a circular rim (IVa), representing the umbrellar margin; it is comparable to the bulging that forms the umbrella in the direct method of budding, but takes place before a manubrium is formed, and is greatly reduced in size, so as to become a little pit. By a simple modification, the open pit becomes a solid ectodermal ingrowth, just as in Teleostean fishes the hollow medullary tube, or the auditory pit of other vertebrate embryos, is formed at first as a solid cord of cells, which acquires a cavity secondarily. Moreover, the entocodon, however developed, gives rise at first to a closed cavity, representing a closing over of the umbrella, temporary in the bud destined to be a free medusa, but usually permanent in the sessile gonophore. As has been shown above, the closing up of the sub-umbral cavity is one of the earliest degenerative changes in the evolution of the gonophore, and we may regard it as the umbrellar fold taking on a protective function, either temporarily for the bud or permanently for the gonophore.

To sum up, the entocodon is a precocious formation of the umbrella, closing over to protect the organs in the umbrellar cavity. The possession of an entocodon proves the medusa-nature of the bud, and can only be explained on the theory that gonophores are degenerate medusae, and is inexplicable on the opposed view that medusae are derived from gonophores secondarily set free. In the sporosac, however, the medusa-individual has become so degenerate that even the documentary proof, so to speak, of its medusoid nature may have been destroyed, and only circumstantial evidence of its nature can be produced.

4. Germinal Budding.—This method of budding is commonly described as budding from a single body-layer, instead of from both layers. The layer that produces the bud is invariably the ectoderm, i.e. the layer in which, in Hydromedusae, the generative cells are lodged; and in some cases the buds are produced in the exact spot in which later the gonads appear. From these facts, and from those of the sporogony, to be described below, we may regard budding to this type as taking place from the germinal epithelium rather than from ordinary ectoderm.

(a) The Polyp.—Budding from the ectoderm alone has been described by A. Lang [29] in Hydra and other polyps. The tissues of the bud become differentiated into ectoderm and endoderm, and the endoderm of the bud becomes secondarily continuous with that of the parent, but no part of the parental endoderm contributes to the building up of the daughter-polyp. Lang regarded this method of budding as universal in polyps, a notion disproved by O. Seeliger [52] who went to the opposite extreme and regarded the type of budding described by Lang as non-existent. In view, however, both of the statements and figures of Lang and of the facts to be described presently for medusae (Margellium), it is at least theoretically possible that both germinal and vegetative budding may occur in polyps as well as in medusae.

(b) The Medusa.—The clearest instance of germinal budding is furnished by Margellium (Rathkea) octopunctatum, one of the Margelidae. The budding of this medusa has been worked out in detail by Chun (Hydrozoa, [1]), to whom the reader must be referred for the interesting laws of budding regulating the sequence and order of formation of the buds.

The buds of Margellium are produced on the manubrium in each of the four interradii, and they arise from the ectoderm, that is to say, the germinal epithelium, which later gives rise to the gonads. The buds do not appear simultaneously but successively on each of the four sides of the manubrium, thus:

1
34
2

and secondary buds may be produced on the medusa-buds before the latter are set free as medusae. Each bud arises as a thickening of the epithelium, which first forms two or three layers (fig. 47, A), and becomes separated into a superficial layer, future ectoderm, surrounding a central mass, future endoderm (fig. 47, B). The ectodermal epithelium on the distal side of the bud becomes thickened, grows inwards, and forms a typical entocodon (fig. 37, D, E, F). The remaining development of the bud is just as described above for the indirect method of medusa-budding (fig. 47, G, H). When the bud is nearly complete, the body-wall of the parent immediately below it becomes perforated, placing the coelenteric cavity of the parent in secondary communication with that of the bud (H), doubtless for the better nutrition of the latter.