Page:EB1911 - Volume 14.djvu/161

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
ELEUTHEROBLASTEA]
HYDROMEDUSAE
149


intimately connected with the question of the relation between polyp and medusa, to be discussed presently. It will be seen elsewhere, however, that whatever view may be held as to the origin of metagenesis in Hydromedusae, in the case of Scyphomedusae (q.v.) no other view is possible than that the alternation of generations is the direct result of larval proliferation.

To complete our survey of life-cycles in the Hydromedusae it is necessary to add a few words about the position of Hydra and its allies. If we accept the view that Hydra is a true sexual polyp, and that its gonads are not gonophores (i.e. medusa-buds) in the extreme of degeneration, then it follows from Brooks’s theory that Hydra must be descended from an archaic form in which the medusan type of organization had not yet been evolved. Hydra must, in short, be a living representative of the ancestor of which the actinula-stage is a transient reminiscence in the development of higher forms. It may be pointed out in this connexion that the fixation of Hydra is only temporary, and that the animal is able at all times to detach itself, to move to a new situation, and to fix itself again. There is no difficulty whatever in regarding Hydra as bearing the same relation to the actinula-stage of other Hydromedusae that a Rotifer bears to a trochophore-larva or a fish to a tadpole.

The Relation of Polyp and Medusa.—Many views have been put forward as to the morphological relationship between the two types of person in the Hydromedusae. For the most part, polyp and medusa have been regarded as modifications of a common type, a view supported by the existence, among Scyphomedusae (q.v.), of sessile polyp-like medusae (Lucernaria, &c.). R. Leuckart in 1848 compared medusae in general terms to flattened polyps. G. J. Allman [1] put forward a more detailed view, which was as follows. In some polyps the tentacles are webbed at the base, and it was supposed that a medusa was a polyp of this kind set free, the umbrella being a greatly developed web or membrane extending between the tentacles. A very different theory was enunciated by E. Metchnikoff. In some hydroids the founder-polyp, developed from a planula after fixation, throws out numerous outgrowths from the base to form the hydrorhiza; these outgrowths may be radially arranged so as to form by contact or coalescence a flat plate. Mechnikov considered the plate thus formed at the base of the polyp as equivalent to the umbrella, and the body of the polyp as equivalent to the manubrium, of the medusa; on this view the marginal tentacles almost invariably present in medusae are new formations, and the tentacles of the polyp are represented in the medusa by the oral arms which may occur round the mouth, and which sometimes, e.g. in Margelidae, have the appearance and structure of tentacles. Apart from the weighty arguments which the development furnishes against the theories of Allman and Mechnikov, it may be pointed out that neither hypothesis gives a satisfactory explanation of a structure universally present in medusae of whatever class, namely the endoderm-lamella, discovered by the brothers O. and R. Hertwig. It would be necessary to regard this structure as a secondary extension of the endoderm in the tentacle-web, on Allman’s theory, or between the outgrowths of the hydrorhiza, on Mechnikov’s hypothesis. The development, on the contrary, shows unequivocally that the endoderm-lamella arises as a local coalescence of the endodermal linings of a primitively extensive gastral space.

The question is one intimately connected with the view taken as to the nature and individuality of polyp, medusa and gonophore respectively. On this point the following theories have been put forward.

1. The theory that the medusa is simply an organ, which has become detached and has acquired a certain degree of independence, like the well-known instance of the hectocotyle of the cuttle-fish. On this view, put forward by E. van Beneden and T. H. Huxley, the sporosac is the starting-point of an evolution leading up through the various types of gonophores to the free medusa as the culminating point of a phyletic series. The evidence against this view may be classed under two heads: first, comparative evidence; hydroids very different in their structural characters and widely separate in the systematic classification of these organisms may produce medusae very similar, at least so far as the essential features of medusan organization are concerned; on the other hydroids closely allied, perhaps almost indistinguishable, may produce gonophores in the one case, medusae in the other; for example, Hydractinia (gonophores) and Podocoryne (medusae), Tubularia (gonophores) and Ectopleura (medusae), Coryne (gonophores) and Syncoryne (medusae), and so on. If it is assumed that all these genera bore gonophores ancestrally, then medusa of similar type must have been evolved quite independently in a great number of cases. Secondly, there is the evidence from the development, namely, the presence of the entocodon in the medusa-bud, a structure which, as explained above, can only be accounted for satisfactorily by derivation from a medusan type of organization. Hence it may be concluded that the gonophores are degenerate medusae, and not that the medusae are highly elaborated gonophores, as the organ-theory requires.

2. The theory that the medusa is an independent individual, fully equivalent to the polyp in this respect, is now universally accepted as being supported by all the facts of comparative morphology and development. The question still remains open, however, which of the two types of person may be regarded as the most primitive, the most ancient in the race-history of the Hydromedusae. F. M. Balfour put forward the view that the polyp was the more primitive type, and that the medusa is a special modification of the polyp for reproductive purposes, the result of division of labour in a polyp-colony, whereby special reproductive persons become detached and acquire organs of locomotion for spreading the species. W. K. Brooks, on the other hand, as stated above, regards the medusa as the older type and looks upon both polyp and medusa, in the Hydromedusae, as derived from a free-swimming or floating actinula, the polyp being thus merely a fixed nutritive stage, possessing secondarily acquired powers of multiplication by budding.

The Hertwigs when they discovered the endoderm-lamella showed on morphological grounds that polyp and medusa are independent types, each produced by modification in different directions of a more primitive type represented in development by the actinula-stage. If a polyp, such as Hydra, be regarded simply as a sessile actinula, we must certainly consider the polyp to be the older type, and it may be pointed out that in the Anthozoa only polyp-individuals occur. This must not be taken to mean, however, that the medusa is derived from a sessile polyp; it must be regarded as a direct modification of the more ancient free actinula form, without primitively any intervening polyp-stage, such as has been introduced secondarily into the development of the Leptolinae and represents a revival, so to speak, of an ancestral form or larval stage, which has taken on a special role in the economy of the species.

Systematic Review of the Hydromedusae

Order I. Eleutheroblastea.—Simple polyps which become sexually mature and which also reproduce non-sexually, but without any medusoid stage in the life-cycle.

The sub-order includes the family Hydridae, containing the common fresh-water polyps of the genus Hydra. Certain other forms of doubtful affinities have also been referred provisionally to this section.

Hydra.—This genus comprises fresh-water polyps of simple structure. The body bears tentacles, but shows no division into hydrorhiza, hydrocaulus or hydranth; it is temporarily fixed and has no perisarc. The polyp is usually hermaphrodite, developing both ovaries and testes in the same individual. There is no free-swimming planula larva, but the stage corresponding to it is passed over in an enveloping cyst, which is secreted round the embryo by its own ectodermal layer, shortly after the germ-layer formation is complete, i.e. in the parenchymula-stage. The envelope is double, consisting of an external chitinous stratified shell, and an internal thin elastic membrane. Protected by the double envelope, the embryo is set free as a so-called “egg,” and in Europe it passes the winter in this condition. In the spring the embryo bursts its shell and is set free as a minute actinula which becomes a Hydra.

Many species are known, of which three are common in European waters. It has been shown by C. F. Jickeli (28) that the species are distinguishable by the characters of their nematocysts. They also show characteristic differences in the egg (Brauer [2]). In Hydra viridis the polyp is of a green colour and produces a spherical egg with a smooth shell which is dropped into the mud. H. grisea is greyish in tint and produces a spherical egg with a spiky shell, which also is dropped into the mud. H. fusca (=H. vulgaris) is brown in colour, and produces a bun-shaped egg, spiky on the convex surface, and attached to a water-weed or some object by its flattened side. Brauer found a fourth species, similar in appearance to H. fusca, but differing from the three other species in being of separate sexes, and in producing a spherical egg with a knobby shell, which is attached like that of H. fusca.

The fact already noted that the species of Hydra can be distinguished by the characters of their nematocysts is a point of great interest. In each species, two or three kinds of nematocysts occur, some large, some small, and for specific identification the nematocysts must be studied collectively in each species. It is very remarkable that this method of characterizing and diagnozing species has never been extended to the marine hydroids. It is quite possible that the characters of the nematocysts might afford data as useful to the systematist in this group as do the spicules of sponges, for instance. It would be particularly interesting to ascertain how the nematocysts of a polyp are related to those possessed by the medusa budded from it, and it is possible that in this manner obscure questions of relationship might be cleared up.