Page:EB1911 - Volume 16.djvu/679

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
GAS] 
LIGHTING
657


converted into oxides. The flame of an atmospheric burner is first applied to the constricted portion at the top of the mantle, whereupon the cotton gradually burns downwards, the shape of the mantle to a great extent depending on the regularity with which the combustion takes place. A certain amount of carbon is left behind after the flame has died out, and this is burnt off by the judicious application of a flame from an atmospheric blast burner to the interior. The action which takes place during the burning off is as follows: The cellulose tubes of the fibre are filled with the crystallized nitrates of the metals used, and as the cellulose burns the nitrates decompose, giving up oxygen and forming fusible nitrites, which in their semi-liquid condition are rendered coherent by the rapid expansion as the oxide forms. As the action continues the nitrites become oxides, losing their fusibility, so that by the time the organic matter has disappeared a coherent thread of oxide is left in place of the nitrate-laden thread of cotton. In the early days of incandescent lighting the mantles had to be sent out unburnt, as no process was known by which the burnt mantle could be rendered sufficiently strong to bear carriage. As the success of a mantle depends upon its fitting the flame, and as the burning off requires considerable skill, this was a great difficulty. Moreover the acid nature of the nitrates in the fibres rapidly rotted them, unless they had been subjected to the action of ammonia gas, which neutralized any excess of acid. It was discovered, however, that the burnt-off mantle could be temporarily strengthened by dipping it in collodion, a solution of soluble gun-cotton in ether and alcohol together with a little castor-oil or similar material to prevent excessive shrinkage when drying. When the mantle was removed from the solution a thin film of solid collodion was left on it, and this could be burned away when required.

After the Welsbach mantle had proved itself a commercial success many attempts were made to evade the monopoly created under the patents, and, although it was found impossible to get the same illuminating power with anything but the mixture of 99% thoria and 1% ceria, many ingenious processes were devised which resulted in at least one improvement in mantle manufacture. One of the earliest attempts in this direction was the “Sunlight” mantle, in which cotton was saturated with the oxides of aluminium, chromium and zirconium, the composition of the burnt-off mantle being:—

Alumina 86.88
Chromium oxide 8.68
Zirconia 4.44
  ———
  100.00

The light given by these mantles was entirely dependent upon the proportion of chromium oxides present, the alumina playing the part of base in the same way that the thoria does in the Welsbach mantle, the zirconia being added merely to strengthen the structure. These mantles enjoyed considerable popularity owing to the yellowish pink light they emitted, but, although they could give an initial illumination of 12 to 15 candles per foot of gas consumed, they rapidly lost their light-giving power owing to the slow volatilization of the oxides of chromium and aluminium.

Another method of making the mantle was first to produce a basis of thoria, and, having got the fabric in thorium oxide, to coat it with a mixture of 99% thoria and 1% ceria. This modification seems to give an improvement in the initial amount of light given by the mantle. In the Voelker mantle a basis of thoria was produced, and was then coated by dipping in a substance termed by the patentee “Voelkerite,” a body made by fusing together a number of oxides in the electric furnace. The fused mass was then dissolved in the strongest nitric acid, and diluted with absolute alcohol to the necessary degree. A very good mantle having great lasting power was thus produced. It was claimed that the process of fusing the materials together in the electric furnace altered the composition in some unexplained way, but the true explanation is probably that all water of hydration was eliminated.

The “Daylight” mantle consisted of a basis of thoria or thoria mixed with zirconia, dipped in collodion containing a salt of cerium in solution; on burning off the collodion the ceria was left in a finely divided condition on the surface of the thoria. In this way a very high initial illuminating power was obtained, which, however, rapidly fell as the ceria slowly volatilized.

Perhaps the most interesting development of the Welsbach process was dependent upon the manufacture of filaments of soluble guncotton or collodion as in the production of artificial silk. In general the process consisted in forcing a thick solution of the nitrated cellulose through capillary glass tubes, the bore of which was less than the one-hundredth of a millimetre. Ten or twelve of the expressed fibres were then twisted together and wound on a bobbin, the air of the room being kept sufficiently heated to cause the drying of the filaments a few inches from the orifice of the tube. The compound thread was next denitrated to remove its extreme inflammability, and for this purpose the skeins were dipped in a solution of (for instance) ammonium sulphide, which converted them into ordinary cellulose. After washing and drying the skeins were ready for the weaving machines. In 1894 F. de Mare utilized collodion for the manufacture of a mantle, adding the necessary salts to the collodion before squeezing it into threads. O. Knöfler in 1895, and later on A. Plaissetty, took out patents for the manufacture of mantles by a similar process to De Mare’s, the difference between the two being that Knöfler used ammonium sulphide for the denitration of his fabric, whilst Plaissetty employed calcium sulphide, the objection to which is the trace of lime left in the material. Another method for making artificial silk which has a considerable reputation is that known as the Lehner process, which in its broad outlines somewhat resembles the Chardonnet, but differs from it in that the excessively high pressures used in the earlier method are done away with by using a solution of a more liquid character, the thread being hardened by passing through certain organic solutions. This form of silk lends itself perhaps better to the carrying of the salts forming the incandescent oxides than the previous solutions, and mantles made by this process, known as Lehner mantles, showed promise of being a most important development of De Mare’s original idea. Mantles made by these processes show that it is possible to obtain a very considerable increase in life and light-emissivity, but mantles made on this principle could not now be sold at a price which would enable them to compete with mantles of the Welsbach type.

The cause of the superiority of these mantles having been realized, developments in the required direction were made. The structure of the cotton mantle differed widely from that obtained by the various collodion processes, and this alteration in structure was mainly responsible for the increase in life. Whereas the average of a large number of Welsbach mantles tested only showed a useful life of 700 to 1000 hours, the collodion type would average about 1500 hours, some mantles being burnt for an even longer period and still giving an effective illumination. This being so, it was clear that one line of advance would be found in obtaining some material which, whilst giving a structure more nearly approaching that of the collodion mantle, would be sufficiently cheap to compete with the Welsbach mantle, and this was successfully done.

By the aid of the microscope the structure of the mantle can be clearly defined, and in examining the Welsbach mantle before and after burning, it will be noticed that the cotton thread is a closely twisted and plaited rope of myriads of minute fibres, whilst the collodion mantle is a bundle of separate filaments without plait or heavy twisting, the number of such filaments varying with the process by which it was made. This latter factor experiment showed to have a certain influence on the useful light-giving life of the mantle, as whereas the Knöfler and Plaissetty mantles had an average life of about 1500 hours, the Lehner fabric, which contained a larger number of finer threads, could often be burnt continuously for over 3000 hours, and at the end of that period gave a better light than most of the Welsbach after as many hundred.

It is well known that plaiting gave the cotton candle-wick that power of bending over, when freed from the binding effect of the candle material and influenced by heat, which brought the tip out from the side of the flame. This, by enabling the air to get at it and burn it away, removed the nuisance of having to snuff the candle, which for many centuries has rendered it a tiresome method of lighting. In the cotton mantle, the tight twisting of the fibre brings this torsion into play. When the cotton fibres saturated with the nitrates of the rare metals are burnt off, and the conversion into oxides takes place, as the cotton begins to burn, not only does the shrinkage of the mass throw a strain on the oxide skeleton, but the last struggle of torsion in the burning of the fibre tends towards disintegration of the fragile mass, and this all plays a part in making the cotton mantle inferior to the collodion type.

If ramie fibre be prepared in such a way as to remove from it all traces of the glutinous coating, a silk-like fabric can be obtained from it, and if still further prepared so as to improve its absorbent powers, it can be formed into mantles having a life considerably greater than is possessed by those of the cotton fabric. Ramie thus seemed likely to yield a cheap competitor in length of endurance to the collodion mantle, and results have justified this expectation. By treating the fibre so as to remove the objections against its use for mantle-making, and then making it into threads with the least possible amount of twist, a mantle fabric can be made in every way superior to that given by cotton.

The Plaissetty mantles, which as now manufactured also show a considerable advance in life and light over the original Welsbach mantles, are made by impregnating stockings of either cotton or ramie with the nitrates of thorium and cerium in the usual way, and, before burning off, mercerizing the mantle by steeping in ammonia solution, which converts the nitrates into hydrates, and gives greater density and strength to the finished mantle. The manufacturers of the Plaissetty mantle have also made a modification