Jump to content

Page:EB1911 - Volume 17.djvu/541

From Wikisource
This page has been proofread, but needs to be validated.
524
MAMMALIA


be transposed. The most remarkable feature about the marsupial dentition is that, at most, only a single pair of teeth is replaced in each jaw; this pair, on the assumption that there are four premolars, representing the third of that series. With the exception of this replacing pair of teeth in each jaw, it is considered by many authorities that the marsupial dentition corresponds to the deciduous, or milk, dentition of placentals. If this be really the case, the rudiments of an earlier set of teeth which have been detected in the jaws of some members of the order, represent, not the milk-series, but a prelacteal dentition. On the assumption that these functional teeth correspond to the milk-series of placentals, marsupials in this respect agree exactly with modern elephants, in which the same peculiarity exists.

In very few mammals are teeth entirely absent. Even in the whalebone whales their germs are formed in the same manner and at the same period of life as in other mammals, and even become partially calcified, although they never rise above the gums, and completely disappear before birth. In the American anteaters and the pangolins among the Edentata no traces of teeth have been found at any age. Adult monotremes are in like case, although the duck-billed platypus (Ornithorhynchus) has teeth when young on the sides of the jaws. The northern sea-cow (Rhytina), now extinct, appears to have been toothless throughout life.

In different groups of mammals the dentition is variously specialized in accordance with the nature of the food on which the members of these groups subsist. From this point of view the various adaptive modifications of mammalian dentition may be roughly grouped under the headings of piscivorous, carnivorous, insectivorous, omnivorous and herbivorous.

The fish-eating, or piscivorous, type of dentition is exemplified under two phases in the dolphins and in the seals (being in the latter instance a kind of retrograde modification from the carnivorous type). In the dolphins, and in a somewhat less marked degree among the seals, this type of dentition consists of an extensive series of conical, nearly equal-sized, sharp-pointed teeth, implanted in an elongated and rather narrow mouth (fig. 1), and adapted to seize slippery prey without either tearing or masticating. In the dolphins the teeth form simple cones, but in the seals they are often trident-like; while in the otters the dentition differs but little from the ordinary carnivorous type.

This carnivorous adaptation, in which the function is to hold and kill struggling animals, often of large size, attains its highest development in the cats (Felidae). The canines are in consequence greatly developed, of a cutting and piercing type, and from their wide separation in the mouth give a firm hold; the jaws being as short as is consistent with the free action of the canines, or tusks, so that no power is lost. The incisors are small, so as not to interfere with the penetrating action of the tusks; and the crowns of some of the teeth of the cheek-series are modified into scissor-like blades, in order to rasp off the flesh from the bones, or to crack the bones themselves, while the later teeth of this series tend to disappear.

In the insectivorous type, as exemplified in moles and shrew-mice, the middle pair of incisors in each jaw are long and pointed so as to have a forceps-like action for seizing insects, the hard coats of which are broken up by the numerous sharp cusps surmounting the cheek-teeth.

In the omnivorous type, as exemplified in man and monkeys, and to a less specialized degree in swine, the incisors are of moderate and nearly equal size; the canines, if enlarged, serve for other purposes than holding prey, and such enlargement is usually confined to those of the males; while the cheek-teeth have broad flattened crowns surmounted by rounded bosses, or tubercles.

In the herbivorous modification, as seen in three distinct phases in the horse, the kangaroo, and in ruminants, the incisors are generally well developed in one or both jaws, and have a nipping action, either against one another or against a toothless hard pad in the upper jaw; while the canines are usually small or absent, at least in the upper jaw, but in the lower jaw may be approximated and assimilated to the incisors. The cheek-teeth are large, with broad flattened crowns surmounted either by simple transverse ridges, or complicated by elevations and infoldings. In the specialized forms the premolars tend to become more or less completely like the molars; and, contrary to what obtains among the Carnivora, the whole series of cheek-teeth (with the occasional exception of the first) is very strongly developed.

Opinions differ as to the mode in which the more complicated cheek-teeth of mammals have been evolved from a simpler type of tooth. According to one theory, this has been brought about by the fusion of two or more teeth of a simple conical type to form a compound tooth. A more generally accepted view—especially among palaeontologists—is the tritubercular theory, according to which the most generalized type of tooth consists of three cusps arranged in a triangle, with the apex pointing inwards in the teeth of the upper jaw. Additions of extra cusps form teeth of a more complicated type. Each cusp of the primitive triangle has received a separate name, both in the teeth of the upper and of the lower jaw, while names have also been assigned to super-added cusps. Molar teeth of the simple tritubercular type persist in the golden moles (Chrysochloris) among the Insectivora and also in the marsupial mole (Notoryctes) among the marsupials. The type is, moreover, common among the mammals of the early Eocene, and still more so in those of the Jurassic epoch; this forming one of the strongest arguments in favour of the tritubercular theory. (See Professor H. F. Osborn, “Palaeontological Evidence for the Original Tritubercular Theory,” in vol. xvii. (new series) of the American Journal of Science, 1904.)

Digestive System.—As already mentioned, mammals are specially characterized by the division of the body-cavity into two main chambers, by means of the horizontal muscular partition known as the diaphragm, which is perforated by the great blood-vessels and the alimentary tube. The mouth of the great majority of mammals is peculiar for being guarded by thick fleshy lips, which are, however, absent in the Cetacea; their principal function being to seize the food, for which purpose they are endowed, as a rule, with more or less strongly marked prehensile power. The roof of the mouth is formed by the palate, terminating behind by a muscular, contractile arch, having in man and a few other species a median projection called the uvula, beneath which the mouth communicates with the pharynx. The anterior part of the palate is composed of mucous membrane tightly stretched over the flat or slightly concave bony layer which separates the mouth from the nasal passages, and is generally raised into a series of transverse ridges, which sometimes, as in ruminants, attain a considerable development. In the floor of the mouth, between the two branches of the lower jaw, and supported behind by the hyoid apparatus, lies the tongue, an organ the free surface of which, especially in its posterior part, is devoted to the sense of taste, but which by reason of its great mobility (being composed almost entirely of muscular fibres) performs important mechanical functions connected with masticating and procuring food. Its modifications of form in different mammals are numerous. Between the long, extensile, worm-like tongue of the anteaters, essential to the peculiar mode of feeding of those animals, and the short, immovable and almost functionless tongue of the porpoise, every intermediate condition is found. Whatever the form, the upper surface is, however, covered with numerous fine papillae, in which the terminal filaments of the taste-nerve are distributed. In some mammals, notably lemurs, occurs a hard structure known as the sublingua, which may terminate in a free horny tip. If, as has been suggested, this organ represents the tongue of reptiles, the mammalian tongue will obviously be a super-added organ distinctive of the class.

Fig. 3.—Diagrammatic Plan of the general arrangement of the Alimentary Canal in a typical Mammal.

o, oesophagus;
st, stomach;
p, pylorus;
ss small intestine (abbreviated);
c, caecum;
ll, large intestine or colon, ending in
r, the rectum.

Salivary glands, of which the most constant are the parotid and the submaxillary, are always present in terrestrial mammals. Next in constancy are the “sublingual,” closely associated with the last-named, at all events in the locality in which the secretion is poured out; and the “zygomatic,” found only in some mammals in the cheek, just under cover of the anterior part of the zygomatic arch, the duct entering the mouth-cavity near that of the parotid.

The alimentary, or intestinal, canal varies greatly in relative length and capacity in different mammals, and also offers manifold peculiarities of form, being sometimes a simple cylindrical tube of nearly uniform calibre throughout, but more often subject to alterations of form and capacity in different portions of its course—the most characteristic and constant being the division into an upper and narrower and a lower and wider portion, called respectively the small and the large intestine; the former being arbitrarily divided into duodenum, jejunum and ileum, and the latter into colon and rectum. One of the most striking peculiarities of this part of the canal is the frequent presence of a blind pouch, “caecum,” situated at the junction of the large and the small intestine. Their structure presents an immense variety of development, from the smallest bulging of a portion of the side-wall of the tube to a huge and complex sac, greatly exceeding in capacity the remainder of the alimentary canal. It is only in herbivorous mammals that the caecum is developed to this great extent, and among these there is a complementary relationship between the size and complexity of the organ and that of the stomach. Where the latter is simple the caecum is generally the largest, and vice versa. In vol. xvii. (1905) of the Transactions of the Zoological Society of London, Dr P. Chalmers Mitchell has identified the paired caeca, or blind appendages, of the intestine of birds with the usually single caecum of mammals. These caeca occur in birds (as in mammals) at the junction of the small with the large intestine; and while in ordinary perching-birds they are reduced to small nipple-like buds of no functional importance, in many other birds—owls for instance—they form quite long receptacles. Among mammals,