Page:EB1911 - Volume 20.djvu/251

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.
FIELD ARTILLERY EQUIPMENTS]
ORDNANCE
     221


stability. To allow the liquid to flow past the piston, grooves (called ports) are formed in the sides of the cylinder, and by varying the depth of the grooves at different points the resistance can be adjusted as required.

Running-up Gear.—In compressed-air equipments a separate piston is attached to the gun, working in a cylinder on the carriage connected with a reservoir of air at a pressure of about 300 ℔ to the square inch. This gear is much lighter than the springs, but the difficulty of keeping the piston and gland tight is a serious objection to it, although this difficulty is partly overcome by filling the cylinder with glycerin so that the air has no direct access to the piston or the gland. In spring equipments the principal difficulty lies in providing a sufficient length of recoil without undue compression of the column of springs. Thus if the spring column be 6 ft. long and the gun recoils 41/2 ft. the springs arc compressed into a space of 11/2 ft., or a quarter of their working length. This treatment is liable to crush the springs. German gun-makers get over this difficulty by the use of very high-class springs made of steel having a tenacity of about 140 tons to the square inch with an elastic limit of 90 tons. They also use a valve in the buffer piston which relieves the springs of resistance in running-up, and so allows slighter springs to be used. But in England the telescopic spring-case patented by the Elswick Ordnance Company is preferred. Suppose that the spring-columns before firing are each 4 ft. long; then if the telescopic gear be pulled out for a distance of 4 ft. on recoil, each spring column will be compressed to 2 ft., or only to half its length. Tensile running up springs are used by some firms, as Cockerill of Seraing (Liége). They are open to the objection that if a spring breaks the gun is for the time being rendered useless, which is not the case with compression springs.

The intermediate carriage is used chiefly in equipments with buffer above the gun; it serves as a means of connecting the cradle to the lower carriage. When the spade is fixed in the ground it is impossible to shift the carriage laterally in order to correct the aim, the intermediate carriage is therefore pivoted so that it can traverse laterally about 3 degrees each way. Instead of using an intermediate carriage the direction may be given to the gun by shifting the whole carriage sideways along the axle in an arc about the point of the trail, which is fixed by the spade. This system is used in guns of French manufacture and in the 1902 Russian gun. It is simple in action, but requires the shield to be cut away on either side to clear the wheels at extreme traverse.

The trail is either a drawn steel tube, of circular section as in the 18 pr., or of closed U section as in the Ehrhardt carriages, or else a box trail built up of sheet steel. In the Krupp equipments the trail is bent downwards to give a greater range of elevation to the gun.

Elevating Gear, in order to save space, is usually of the telescopic screw pattern, in which one screw is inside the other so that the two pack into half the length of a single screw. The spade is of the shape shown in the illustration of the 18 pr. Q.F. gun. For equipments which may have to be used on rock, such as the Swiss gun, the spade is made to fold upwards when desired. The axletree is usually a hollow steel forging with the ends tapered to receive the wheels. The wheels are of wood, with naves of stamped steel. Steel wheels have been tried but are less elastic than wood and have been found unsuitable. England and the United States use 4 ft. 8 in. wheels; most European nations use wheels 4 ft. 31/4 in. in diameter.

The shield is made of hard steel, from 0·12 to 0·236 in. thick. The size and thickness of the shield are limited by considerations of weight. Thus if 150 ℔ of weight be available this will provide a shield about 5 ft. square and 31/2 mm. or 0·138 in. thick, proof against rifle bullets at distances over 600 yds., and against shrapnel bullets at all distances. The present tendency, since the introduction of the French D bullet and German S bullet (see Ammunition: Bullet), is to make shields thicker than this, 5 mm. or 0·2 in. being the usual thickness.

Recent Developments of the Q.F. Gun-Carriage.—The principle of “differential” recoil gear is as follows: Suppose an ordinary Q.F. field gun held in the recoil position by a catch, loaded, released and allowed to fly forward under the action of the running-up springs. A valve in the buffer relieves the gun of any resistance to running-up. While in rapid motion forward the gun is fired by a tripper which catches the firing lever. The gun then returns to the recoil position and is again held by the catch. On firing, the recoil-velocity is reduced by the amount of the forward velocity previously imparted to the gun. Thus if the ordinary recoil-velocity of a Q.F. gun be 30 fs., and if it be fired while running up at a velocity of 10 fs., the recoil-velocity with respect to the carriage will be only 20 fs. And since the recoil-energy is proportional to the weight of the gun multiplied by the square of the recoil-velocity, the recoil-energy is reduced in the proportion of 900 to 400, or roughly by one-half. This halves the overturning stress on the carriage, and renders it possible to make the gun and carriage lighter for the same power, or to obtain greater power for the same weight. This increase of efficiency is due to the fact that the whole of the recoil-energy is not, as in ordinary Q.F. guns, absorbed by the friction in the buffer, but that part of it is stored up and used to counteract the recoil of the next round. If the hydraulic buffer be dispensed with, and the whole of the recoil taken on the springs or compressed air gear. the overturning stress is reduced to one-fourth of its normal amount. One practical difficulty in the way of applying the differential system to field guns lies in the vibration and slight lateral motion of the carriage during running-up. Since this motion takes place after laying and before firing, it is liable to cause inaccuracy. The only equipment on this principle as yet in use is the French 1907 mountain gun referred to below.

“Semi-automatic” Q.F. field and mountain guns are made by the leading firms, but have not been generally introduced. In these equipments the breech is thrown open by tripping gear during the run-up, and the cartridge case is ejected. When the gun is reloaded the action of introducing the cartridge releases the breech-block, which is closed by a spring. In the Krupp semi-automatic gun the breech-block is set vertically to facilitate loading. This equipment is capable of firing thirty rounds per minute. The principal advantage of the semi-automatic system lies not in the increased rate of fire but in the fact that three gunners are sufficient to carry out the service of the gun. This is of importance in mountain equipments, where the size of the shield is limited.

The introduction of airships into military operations has produced the auto-airship gun, which differs from the ordinary field gun in almost every respect. The attack of airships presents special problems. High elevation, higher even than the howitzer’s, may have to be given, and, unlike the howitzer, the airship gun must be a high-velocity weapon, both ranging power and flatness of trajectory being essential. As regards the shell, to bring down a gasbag, or even to kill a crew, with time shrapnel is difficult, owing to the speed of the airship and the difficulty of observing bursts. Direct hits with ordinary shell are equally hard to obtain, unless the balloon is stationary and the range known. Even if such a hit were got, the ordinary fuse would not act on encountering the slight resistance of the balloon envelope. As regards the equipment, the absorption of recoil at high elevations presents difficulties, the exaggeration of the angle of sight makes the sighting arrangements complicated, and rapidity in changing the line of fire is essential. The most powerful equipment that, in June 1910, had been constructed to meet these conditions was the Krupp 75 mm., which is mounted on a motor lorry, the weight of the equipment and carriage, without gunners, being about 41/4 tons. The equipment is constructed on the differential recoil principle, with rear trunnions on the cradle. The shell is a 12 ℔ H.E., fitted with a highly sensitive fuse and containing, beside the H.E. burster, a quantity of composition which gives off a trail of smoke to facilitate ranging.

The British 18-pr. Q.F. Field Gun (1905) (see Plate III., figs. 60 and 61; also Artillery, Plate II.).—Taking fig. 60 from the top, we see the buffer, telescopic spring-case and springs on top of the cradle, the buffer being attached to the horn projecting upwards from the breech. The cradle, of bronze, surrounds the gun, and is pivoted on horizontal trunnions on the upper carriage. The gun recoils in the cradle on the guide ribs, which extend for its whole length. The upper carriage is pivoted vertically on the trail and is traversed by the handle seen below the breech. The long elevating screw is formed as a telescopic screw at its lower end to avoid any downward projection; the screw does not turn, but the nut at bottom raises the gun, screw and sights for laying, while the nut at top raises and lowers the gun alone for giving elevation. The tubular trail supports the brake-arms, which also carry the seats for the layer and elevating number. The spade and traversing hand spike are seen at the end of the trail. The telescopic sight is on the left of the gun. The shield is curved well back to give as much protection as possible to the detachment. The lower portion of the shield is hinged and folds up for travelling.

The French Q.F. Field Gun (1898) (fig. 62, Plate III.; see also Artillery, Plate II.).—This is a powerful gun, of unusual length, namely 36 calibres. The breech mechanism is of the eccentric screw type (see Part I. of this article). The gun has compressed-air running up gear and traverses along the axletree. The carriage is anchored by a trail spade and two brake-blocks which are arranged so as to go under the wheels, forming drag shoes, on firing. This method of anchoring causes some delay on coming into action and considerable delay in changing on to a fresh target. The gun has a goniometric sight with independent line of sight. The body of the ammunition wagon is tilted alongside the gun, and, with its armoured bottom and steel doors, forms a good protection for the gunners supplying ammunition.

The German Q.F. Field Gun (1906) (fig. 63).—This is the 1896 gun remounted on a Q.F. carriage. It is not a powerful gun, the ballistics being the same as those of the British 15-pr. B.L. of 1893. It has a single-motion wedge breech action. The gun is mounted on a cradle with buffer and springs under the gun; the cradle traverses on a vertical pivot set in a traversing bed which turns about the axletree. The gun has an arc sight with prismatic telescope and a clinometer mounted on it, and a circular laying-plane for laying on an auxiliary mark. It has not the independent line of sight. The shield is in three pieces, the top flap folding down for travelling. The carriage stands perfectly steady on discharge.

The Russian Q.F. Field Gun (1903) is intended as an improvement on the French gun, being of even greater power. Springs are used for running-up instead of compressed air. To ensure steadiness the gun is kept very low on the carriage; this is effected by the use of