Page:EB1911 - Volume 20.djvu/606

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
554
PALAEOBOTANY
[TERTIARY

sweeping change of generic type, such as took place among the marine invertebrates. It may appear absurd to a geologist that any one could mistake a Cretaceous flora for one of Miocene date, since the marine animals are completely different and the differences are striking. In the case of the plants, however, the Tertiary generic types in large part appeared in Upper Cretaceous times. Few or no extinct types are to be found in these older strata—there is nothing among the plants equivalent to the unmistakably extinct Ammonites, Belemnites, and a hundred other groups, and we only meet with constant variations in the same genus or family, these variations having seldom any obvious relation to phylogeny.

The Miocene period is unrepresented by any deposits in Great Britain, unless the Bovey lignite should belong to its earliest stage; we will therefore commence with the best known region—that of central Europe and especially of Switzerland, whence a prolific flora has been collected and described by Oswald Heer. The Miocene lacustrine deposits are contained in a number of silted-up lake basins, which were successively formed and obliterated during the uprise of the Alps and the continuous folding and bending of the earth's crust which was so striking a feature of the period. These undulations tended to transform valleys into chains of lakes, into which the plants and animals of the surrounding area fell or were washed. We thus find preserved in the Upper Miocene lacustrine deposits of Switzerland a larger flora than is known from any other period of similar length; in fact, an analysis of its composition suggests that the Miocene flora of Switzerland must have been both larger and more varied than that now living in the same country. The best known locality for the Upper Miocene plants is Oeningen, on the Lake of Constance, where have been collected nearly 500 species of plants, the total number of Miocene plants found in Switzerland being stated to be now over 900. Among the characteristics of this Miocene flora are the large number of families represented, the marked increase in the deciduous-leaved plants, the gradual decrease in the number of palms and of tropical plants, and the replacement of these latter by Mediterranean or North American forms. According to Heer, the tropical forms in the Swiss Miocene agree rather with Asiatic types, while the subtropical and temperate plants are allied to forms now living in the temperate zone in North America. Of the 920 species described by Heer, 114 are Cryptogams and 806 flowering plants. Mosses are extremely rare, Heer only describing 3 species. Vascular Cryptogams still include one or two large horsetails with stems over an inch thick, and also 37 species of Fern, amongst the most interesting of which are 5 species belonging to the climbing Lygodium, a genus now living in Java. The number of Ferns is just equal to that now found in Switzerland. Cycads are only represented by fragments of two species, and this seems to be the last appearance of Cycads in Europe. The Coniferae include no fewer than 94 species of Cupressineae and 17 of Abietineae, including several species of Sequoia. Monocotyledons form one-sixth of the known Miocene flora, 25 of them being grasses and 39 sedges; but most of these need further study, and are very insufficiently characterized. Heer records one species of rice and four of millet. Most of the other Monocotyledons call for little remark, though among them is an Iris, a Bromelia and a ginger. Smilax, as in earlier times, was common. Palms, referred to 11 species, are found, though they seem to have decreased in abundance; of them 7 are fan-palms, the others including Phoenicites—a form allied to the date—and a trailing palm, Calamopsis, allied to the canes and rattans. Among the Dicotyledons, the Leguminosae take the first place with 131 species, including Acacia, Caesalpinia and Cassia, each represented by several forms. The occurrence of 90 species of Amentaceae shows that, as the climate became less tropical, the relative proportion of this group to the total flora increased. Evergreen oaks are a marked characteristic of the period, more than half the Swiss species being allied to living American forms. Fig-trees referred to 17 species occur, all with undivided leathery leaves; one is close to the banyan, another to the indiarubber-tree. The Laurineae were plentiful, and include various true laurels, camphor-trees, cinnamon, Persea and Sassafras. The Proteaceae, according to Heer, are still common, the Australian genera Hakea, Dryandra, Grevillea and Banksia, being represented. Amongst gamopetalous plants several of our largest living families, including Campanulaceae, Labiatae, Solanaceae and Primulaceae, are still missing; and of Boragineae, Scrophidarineae, Gentianeae and Caprifoliaceae there are only faint and doubtful indications. The Compositae are represented by isolated fruits of various species. Twining lianas are met with in a species of Bignonia; Umbelliferae Ranunculaceae and Cruciferae, are represented by a few fruits. These families, however, do not appear to have had anything like their present importance in the temperate flora, though, as they are mainly herbaceous plants with fruits of moderate hardness, they may have decayed and left no trace. The American Liriodendron still flourished in Europe. Water-lilies of the genera Nymphaea and Nelumbium occur. Maples were still plentiful, 20 species having been described. Rosaceae are rare, Crataegus, Prunus and Amygdalus, being the only genera recorded. It is obvious that many of these Swiss Miocene plants will need more close study before their specific characters, or even their generic position, can be accepted as thoroughly made out; still, this will not affect the general composition of the flora, with its large proportion of deciduous trees and evergreens, and its noticeable deficiency in many of our largest living families.

From Europe it will be convenient to pass to a distant region of similar latitude, so that we may see to what extent botanical Tertiary of North America. provinces existed in Eocene and Oligocene times. It so happens that the interior of temperate North America is almost the only region outside Europe in which a series of plant-bearing strata give a connected history of these periods, and in which the plants have been collected and studied. It is unfortunately still very difficult to correlate even approximately the strata on the two sides of the Atlantic, and there is great doubt as to what strata belong to each division of the Tertiary period even in different parts of North America. This difficulty will disappear as the strata become better known; but at present each of the silted-up lakes has to be studied separately, for we cannot expect so close a correspondence in their faunas and floras as is found in the more crowded and smaller basins in central Europe.

Perhaps the most striking characteristic of the Tertiary floras of North America, as distinguished from those of Europe, is the greater continuity in their history and greater connexion with the existing flora of the same regions. This difference is readily explained when we remember that in Europe the main barriers which stop migration, such as the Alps and the Mediterranean, run east and west, while in America the only barriers of any importance run north and south. In consequence of this peculiarity, climatic or orographic changes in Europe tend to drive animals and plants into a cul de sac, from which there is no escape; but in America similar climatic waves merely cause the species alternately to retreat and advance. This difficulty in migration is probably the reason why the existing European flora is so poor in large-fruited trees compared with what it was in Miocene times or with the existing flora of North America. In America the contrast between the Eocene forests and those now living is much less striking, and this fact has led to the wrong assumption that the present American flora had its origin in the American continent. Such a conclusion is by no means warranted by the facts, for in Tertiary times, as we have seen, the European flora had a distinctly “American” facies. Therefore the so-called American forms may have originated in the Old World, or more probably, as Saporta suggests, in the polar regions, whence they were driven by the increase of cold southwards into Europe and into America. The American Tertiary flora is so large, and the geology of the deposits is so intricate, that it is out of the question to discuss them more fully within the limits of this article. We may point out, however, that the early Tertiary floras seem to indicate a much closer connexion and a greater community of species than is found between the existing plants of Europe and America. Or, rather, we should perhaps say that ancient floras suggest recent dispersal from the place of origin, and less time in which to vary and become modified by the loss of different groups in the two continents. Geographical provinces are certainly indicated by the Eocene flora of Europe and America, but these are less marked than those now existing.

If we turn to a more isolated region, like Australia, we find a Lower Eocene flora distinctly related to the existing flora of Australia. Australia and not to that of other continents. Australasia had then as now a peculiar flora of its own, though the former wide dispersal of the Proteaceae and Myrtaceae, and also the large number of Amentaceae then found in Australia, make the Eocene plants of Europe and Australia much less unlike than are the present floras.

Within the Arctic circle a large number of Tertiary plants have been collected. These were described by Heer, who Arctic Regions. referred them to the Miocene period; he recognized, in fact, two periods during which Angiosperms flourished within the Arctic regions, the one Upper Cretaceous, the other Miocene. To this view of the Miocene age of the plant-bearing strata in Greenland and Spitsbergen there are serious objections, which we will again refer to when the flora has been described.

The Tertiary flora of Greenland is of great interest, from the extremely high latitude at which the plants flourished, thirty of the species having been collected so far north as lat. 81°. Taking first this most northerly locality, in Grinnell Land, we find the flora