Page:EB1911 - Volume 21.djvu/772

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
ANATOMY]
PLANTS
741

and in fossil Pteridophytes belonging to all the great groups, certain layers of cells remain meristematic among the permanent tissues, or after passing through a resting stage reacquire meristematic properties, and give rise to secondary tissues. Such meristematic layers are called secondary meristems. There are two chief secondary meristems, the cambium and the phellogen. The formation of secondary tissues is characteristic of most woody plants, to whatever class they belong. Every great group or phylum of vascular plants, when it has become dominant in the vegetation of the world, has produced members with the tree habit arising by the formation of a thick woody trunk, in most cases by the activity of a cambium.

The cambium in the typical case, which is by far the most frequent, continues the primary differentiation of xylem and phloem in the desmogen strand (see above), or arises in the resting mesodesm or mesocycle and adds new (secondary) xylem and phloem to the primary tissues. New tangential walls arise in the cells which are the seat of cambial activity, and an initial layer of cells is established which cuts off tissue mother-cells on the inside and outside, alternately contributing to the xylem and to the phloem. A tissue mother-cell of the xylem may, in the most advanced types of Dicotyledons, give rise to—(1) a tracheid; (2) a segment of a vessel; (3) a xylem-fibre; or (4) a vertical file of xylem-parenchyma cells. In the last case the mother-cell divides by a number of horizontal walls. A tissue mother-cell of the phloem may give rise to (1) a segment of a sieve-tube with its companion cell or cells; (2) a phloem fibre; (3) a single phloem-parenchyma (cambiform) cell, or a vertical file of short parenchyma cells. At certain points the cambium does not give rise to xylem and phloem elements, but cuts off cells on both sides which elongate radially and divide by horizontal walls. When a given initial cell of the cambium has once begun to produce cells of this sort it continues the process, so that a radial plate of parenchyma cells is formed stretching in one plane through the xylem and phloem. Such a cell-plate is called a medullary ray. It is essentially a living tissue, and serves to place all the living cells of the secondary vascular tissues in communication. It conducts plastic substances inwards from the cortex, and its cells are frequently full of starch, which they store in winter. They are accompanied by intercellular channels serving for the conduction of oxygen to, and carbon dioxide from, the living cells in the interior of the wood, which would otherwise be cut off from the means of respiration. The xylem and phloem parenchyma consist of living cells, fundamentally similar in most respects to the medullary ray cells, which sometimes replace them altogether. The parenchyma is often arranged in tangential bands between the layers of sieve-tubes and tracheal elements. The xylem parenchyma is often found in strands associated with the tracheal elements. These strands are not isolated, but form a connected network through the wood. The xylem parenchyma cells are connected, as are the medullary ray cells, with the tracheal elements by one-sided bordered pits—i.e. pits with a border on the tracheal element side, and simple on the parenchyma cell side. The fibres are frequently found in tangential bands between similar bands of tracheae or sieve-tubes. The fibrous bands are generally formed towards the end of the year's growth in thickness. The fibres belong to the same morphological category as the parenchyma, various transitions being found between them; thus there may be thin-walled cells of the shape of fibres, or ordinary fibres may be divided into a number of superposed cells. These intermediate cells, like the ordinary parenchyma, frequently store starch, and the fibres themselves, though usually dead, sometimes retain their protoplasm, and in that case may also be used for starch accumulations. The vessels and tracheids are very various in size, shape and structure in different plants. They are nearly always aggregated in strands, which, like those of the parenchyma, are not isolated, but are connected with one another. In a few cases some of the tracheids have very thick walls and reduced cavities, functioning as mechanical rather than as water-conducting elements. All transitions are found between such forms and typical tracheids. These fibre-tracheids are easily confused on superficial view with the true wood-fibres belonging to the parenchymatous system, but their pits are always bordered, though in the extreme type they are reduced to mere slits in the wall. The sieve-tubes of the secondary phloem usually have very oblique end-walls bearing a row of sieve-plates; plates also occur on the radial side walls

The tissue-elements just described are found only in the more complicated secondary vascular tissues of certain Dicotyledons. A considerable evolution in complexity can be traced in passing from the simplest forms of xylem and phloem found in the primary vascular tissues both among Pteridophytes and Phanerogams to these highly differentiated types. In the simplest condition we have merely tracheae and sieve-tubes, respectively associated with parenchyma, which in the former case is usually amylom, i.e. consists of starch-containing cells, and in the latter of proteid cells. This type is found in nearly all Pteridophytes and, so far as is known, in Cycadofilices, both in primary and secondary tissue. The stereom is furnished either by cortical cells or by the tracheal elements, in a few cases by fibres which are probably homologous with sieve-tubes. Among Gymnosperms the secondary xylem is similarly simple, consisting of tracheids which act as stereom as well as hydrom, and a little amylom; while the phloem-parenchyma sometimes undergoes a differentiation, part being developed as amylom, part as proteid cells immediately associated with the sieve-tube. In other cases the proteid cells of the secondary phloem do not form part of the phloem-parenchyma, but occupy the top and bottom cell-rows of the medullary rays, the middle rows consisting of ordinary starchy cells. The top and bottom rows of the xylem rays are often developed as irregularly-thickened radially-elongated, tracheids which serve for the radial conduction of water, and communicate with the ordinary tracheids of the secondary xylem by large bordered pits. The primary vascular tissues of Angiosperms are likewise nearly always simple, consisting merely of tracheae and sieve-tubes often associated with amylom. A characteristic peculiarity, both in the primary and secondary tissue, is that the proteid cells of the phloem are here always sister-cells of the leptoids and are known as companion-cells. In the secondary tissues of Dicotyledons we may have, as already described, considerably more differentiation of the cells, all the varieties being referable, however, on the one hand to the tracheal or sieve-tube type, on the other to the parenchyma type. The main feature is the development of special vascular stereom and storage tissue. In some cases special secreting tissues, resin ducts, oil glands, laticiferous tissue, crystal sacs, &c., may be developed among the ordinary secondary vascular elements.

(from Green's Vegetable Physiology, by permission)

Fig. 23.—Section of part of hypocotyledonary stem of Ricinus communis.

a, Starch sheath, at the extremities of the figure its cells are represented as empty; b, cambium layer.

The limit of each year's increment of secondary wood, in those plants whose yearly activity is interrupted by a regular winter Annual Rings. or dry season, is marked by a more or less distinct line, which is produced by the sharp contrast between the wood formed in the late summer of one year (characterized by the sparseness or small diameter of the tracheal elements, or by the preponderance of fibres, or by a combination of these characters, giving a denseness to the wood) and the loose spring wood of the next year, with its absence of fibres, or its numerous large tracheae. The abundance of water conducting channels is in relation to the need for a large and rapid supply of water to the unfolding leaves in the spring and early summer. In Gymnosperms, where vessels and fibres are absent the late summer wood is composed of radially narrow thick-walled tracheids, the wood of the succeeding spring being wide-celled and thin-walled, so that the limit of the years growth is very well marked. The older wood of a large tree forming a cylinder in the centre of the trunk frequently undergoes marked changes in character. The living elements die, and the walls of all the cells often become hardened, owing to the deposit in them of special substances. Wood thus altered is known as heart-wood, or duramen, as distinguished from the young sap-wood, or alburnum, which, forming a cylinder next the cambium, remains alive and carries on the active functions of the xylem, particularly the conduction of water. The heart-wood ceases to be of any use to the tree except as a support, but owing to its dryness and hardness it alone is of much use for industrial purposes. The great hardness of teak is due to the silica deposited in the heart-wood, and the special colouring matters of various woods, such as satinwood, ebony, &c., are confined to the heart-wood. In some cases the heart-wood, instead of becoming specially hard, remains soft and easily rots, so that the trunk of the tree frequently becomes hollow, as is commonly the case in the willow. Heart-wood is first formed at very different epochs in the life of a tree, according to the species—e.g. after fifteen to twenty years in the oak, forty years in the ash, &c.