Page:EB1911 - Volume 21.djvu/777

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
746
PLANTS
[PHYSIOLOGY

finely cut twigs and their ultimate expansions, the leaves, and we recognize that this subdivision is only an expression of the need to place the living substance in direct relationship with the environment. The formation and gradually increasing thickness of its bark are explained by the continually increasing need of adequate protection to the living cortex, under the strain of the increasing framework which the enormous multiplication of its living protoplasts demands, and the development of which leads to continual rupture of the exterior. The increasing development of the wood as the tree grows older is largely due to the demands for the conduction of water and mineral matters dissolved in it, which are made by the increased number of leaves which from year to year it bears, and which must each be put into communication with the central mass by the formation of new vascular bundles. Similar considerations apply to the peculiar features of the root-system. All these points of structure can only be correctly interpreted after a consideration of the needs of the individual protoplasts, and of the large colony of which they are members.

Gaseous Interchanges and their Mechanism.—Another feature of the construction of the plant has in recent years come into greater prominence than was formerly the case. The organism is largely dependent for its vital processes upon gaseous interchanges. It must receive a large constituent of what ultimately becomes its food from the air which surrounds it, and it must also take in from the same source the oxygen of its respiratory processes. On the other hand, the aerial environment presents considerable danger to the young and tender parts, where the protoplasts are most exposed to extremes of heat, cold, wet, &c. These must in some way be harmonized. No doubt the primary object of the cell-wall of even the humblest protoplast is protection, and this too is the meaning of the coarser tegumentary structures of a bulkier plant. These vary considerably in completeness with its age; in its younger parts the outer cells wall undergoes the change known as cuticularization, the material being changed both in chemical composition and in physical properties. The corky layers which take so prominent a share in the formation of the bark are similarly modified and subserve the same purpose. But these protective layers are in the main impermeable by gases and by either liquid or vapour, and prevent the access of either to the protoplasts which need them. Investigations carried out by Blackman, and by Brown and Escombe, have shown clearly that the view put forward by Boussingault, that such absorption of gases takes place through the cuticular covering of the younger parts of the plant, is erroneous and can no longer be supported. The difficulty is solved by the provision of a complete system of minute intercellular spaces which form a continuous series of delicate canals between the cells, extending throughout the whole substance of the plant. Every protoplast, except in the very young regions, has part of its surface abutting on these, so that its wall is accessible to the gases necessary for its vital processes. There is no need for cuticularization here, as the external dangerous influences do not reach the interior, and the processes of absorption which Boussingault attributed to the external cuticularized cells can take place freely through the delicate cell-walls of the interior, saturated as these are with water. This system of channels is in communication with the outer atmosphere through numerous small apertures, known as stomata, which are abundant upon the leaves and young twigs, and gaseous interchange between the plant and the air is by their assistance rendered constant and safe. This system of intercellular spaces, extending throughout the plant, constitutes a reservoir, charged with an atmosphere which differs somewhat in its composition from the external air, its gaseous constituents varying from time to time and from place to place, in consequence of the interchanges between itself and the protoplasts. It constitutes practically the exterior environment of the protoplasts, though it is ramifying through the interior of the plant.

The importance of this provision in the case of aquatic vascular plants of sturdy bulk is even greater than in that of terrestrial organisms, as their environment offers considerable obstacles to the renewal of the air in their interior. They are without stomata on their submerged portions, and the entry of gases can only take place by diffusion from the water through their external cells, which are not cuticularized. Those which are only partially submerged bear stomata on their exposed portions, so that their environment approximates towards that of a terrestrial plant, but the communication even in their case is much less easy and complete, so that they need a much larger reservoir of air in their interior. This is secured by the development of much larger intercellular spaces, amounting to lacunæ or passages of very considerable size, which are found ramifying in different ways in their interior.

Transpiration.—In the case of terrestrial plants, the continual renewal of the water contained in the vacuoles of the protoplasts demands a copious and continuous evaporation. This serves a double purpose, bringing up from the soil continually a supply of the soluble mineral matters necessary for their metabolic processes, which only enter the plant in solutions of extreme dilution, and at the same time keeping the plant cool by the process of evaporation. The latter function has been found to be of extreme importance in the case of plants exposed to the direct access of the sun's rays, the heat of which would rapidly cause the death of the protoplasts were it not employed in the evaporation of the water. Brown and Escombe have shown that the amount of solar energy taken up by a green leaf may often be fifty times as much as it can utilize in the constructive processes of which it is the seat. If the heat were allowed to accumulate in the leaf unchecked, they have computed that its temperature would rise during bright sunshine at the rate of more than 12° C. per minute, with of course very rapidly fatal results. What is not used in the constructive processes is employed in the evaporation of the water, the leaf being thus kept cool. Whether the leaf is brightly or only moderately illuminated, the same relative proportions of the total energy absorbed are devoted to the purposes of composition and construction respectively. This large evaporation which constitutes the so-called transpiration of plants, takes place not into the external air but into this same inter cellular space system, being possible only through the delicate cell-walls upon which it abuts, as the external coating, whether bark, cork or cuticle, is impermeable by watery vapour. The latter ultimately reaches the external air by diffusion through the stomata, whose dimensions vary in proportion as the amount of water in the epidermal cells becomes greater or less.

Mechanism and Function of Stomata.—It is not quite exact to speak of either the gaseous interchanges or the transpiration as taking place through the stomata. The entry of gases into, and exit from, the cells, as well as the actual exhalation of watery vapour from the latter, take place in the intercellular space system of which the stomata are the outlets. The opening and closing of the stomata is the result of variation in the turgidity of their guard cells, which is immediately affected by the condition of turgidity of the cells of the epidermis contiguous to them. The amount of watery vapour in the air passing through a stoma has no effect upon it, as the surfaces of the guard cells abutting on the air chamber are strongly cuticularized, and therefore impermeable. The only way in which their turgidity is modified is by the entry of water into them from the contiguous cells of the general epidermis and its subsequent withdrawal through the same channel. This opening and closing of the stomata must be looked upon as having a direct bearing only on the emission of watery vapour. There is a distinct advantage in the regulation of this escape, and the mechanism is directly connected with the greater or smaller quantity of water in the plant, and especially in its epidermal cells. This power of varying the area of the apertures by which gases enter the internal reservoirs is not advantageous to the gaseous interchanges—indeed it may be directly the reverse. It may lead to an incipient asphyxiation, as the supply of oxygen may be greatly interfered with and the escape of carbon dioxide may be almost stopped. It may at other times lead to great difficulties in the supply of the gaseous constituents which are used in the