Page:EB1911 - Volume 21.djvu/800

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
CYTOLOGY]
PLANTS
769

chromosomes to the daughter nuclei. The method by which this is brought about is, however, the subject of much controversy. There are two main theories: (1) that the chromosomes which finally separate are at first paired side by side (Allen, Grégoire, Berghs, Strasburger and others), and (2) that they are joined together or paired end to end (Farmer and Moore, Gregory, Mottier and others). Good cytological evidence has been adduced in favour of both theories, but further investigation is necessary before any definite conclusion can be arrived at. The second or homotype division which immediately follows reverts to the normal type except that the already split chromosomes at once separate to form the daughter nuclei without the intervention of a resting stage.

Cell Division.—With the exception of a few plants among the Thallophytes, which consist of a single multinucleate cell, Caulerpa, Vaucheria, &c., the division of the nucleus is followed by the division of the cell either at once, in uninucleate cells, or after a certain number of nuclear divisions, in multinucleate cells. This may take place in various ways. In the higher plants, after the separation of the daughter nuclei, minute granular swellings appear, in the equatorial region, on the connecting fibres which still persist between the two nuclei, to form what is called the cell-plate. These fuse together to form a membrane (fig. 1, C, D) which splits into two layers between which the new cell-wall is laid down. In the Thallophytes the cytoplasm may be segmented by constriction, due to the in-growth of a new cell wall from the old one, as in Spirogyra and Cladophora, or by the formation of cleavage furrows in which the new cell-wall is secreted, as occurs in the formation of the spores in many Algae and Fungi. Cell budding takes place in yeast and in the formation of the conidia of Fungi.

In a few cases both among the higher and the lower plants, of which the formation of spores in the ascus is a typical example, new cells are formed by the aggregation of portions of the cytoplasm around the nuclei which become delimited from the rest of the cell contents by a membrane. This is known as free cell formation.

In Fucus and allied forms the spindle-fibres between the daughter nuclei disappear early and the new cell-wall is formed in the cytoplasm.

Cell Membrane.—The membrane which surrounds the protoplasts in the majority of plants is typically composed of cellulose, together with a number of other substances which are known as pectic compounds. Some of these have a neutral reaction, others react as feeble acids. They can be distinguished by their insolubility in cuprammonia, which dissolves cellulose, and by their behaviour towards stains, some of which stain pectic substances but not cellulose. Cellulose has an affinity for acid stains, pectic substances for basic stains. The cell-membrane may become modified by the process of lignification, suberization, cuticularization or gelatinization. In the Fungi it is usually composed of a modified form of cellulose known as fungus cellulose, which, according to Mangin, consists of callose in combination either with cellulose or pectic compounds. The growth of the cell-wall takes place by the addition of new layers to those already formed. These layers are secreted by the protoplasm by the direct apposition of substances on those already in existence; and they may go on increasing in thickness, both by apposition and by the intussusception of particles probably carried in through the protoplasmic fibres, which penetrate the cell-wall as long as the cell lives. The growth of the cell-wall is very rarely uniform. It is thickened more in some places than in others, and thus are formed the spiral, annular and other markings, as well as the pits which occur on various cells and vessels. Besides the internal or centripetal growth, some cell-walls are thickened on the outside, such as pollen grains, oospores of Fungi, cells of Peridineae, &c. This centrifugal growth must apparently take place by the activity of protoplasm external to the cell. The outer protective walls of the oospores of some Fungi are formed out of protoplasm containing numerous nuclei, which is at an early stage separated from the protoplasm of the oospore. In the Peridineae, Diatoms and Desmids, according to recent researches, the thickenings on the outer walls of the cells are due to the passage of protoplasm from the interior of the cell to the outside, through pores which are found perforating the wall on all sides.

Cell-walls may become modified by the impregnation of various substances. Woody or lignified cell-walls appear to contain substances called coniferin and vanillin, in addition to various other compounds which are imperfectly known. Lignified tissues are coloured yellow by aniline sulphate or aniline chloride, violet with phloroglucin and hydrochloric acid, and characteristic reactions are also given by mixtures containing phenol, indol, skatol, thallin, sulphate, &c. (see Zimmermann's Microtechnique). Staining reagents can also be used to differentiate lignified cell-walls. Cuticularized or suberized cell-walls occur especially in those cells which perform a protective function. They are impervious to water and gases. Both cuticularized and suberized membranes are insoluble in cuprammonia, and are coloured yellow or brown in a solution of chlor-iodide of zinc. It is probable that the corky or suberized cells do not contain any cellulose (Gilson, Wisselingh); whilst cuticularized cells are only modified in their outer layers, cellulose inner layers being still recognizable. The suberized and cuticularized cell-walls appear to contain a fatty body called suberin, and such cell-walls can be stained red by a solution of alcanin, the lignified and cellulose membranes remaining unstained.

(From Wilson. After Guignard and Mottier.)
Fig. 3.—Fertilization in the Lily.

a, Antipodal cell; sp, polar nuclei; pt, pollen tube.

A, Two vermiform nuclei in the embryo sac; one approaching the egg-nucleus, the other uniting with the upper polar nucleus.

B, Union of the vermiform nuclei with the egg-nucleus and the two polar nuclei.

C, Fusion of the germ nuclei in the egg-cell.

Fertilization.—The formation of the zygote or egg-cell takes place usually by the fusion of the contents of two cells, and always includes, as an essential feature, the fusion of two germ nuclei. In many of the lower plants the fusing cells—gametes—are precisely similar so far as size and general appearance are concerned; and the whole contents of the two cells fuse together, cytoplasm with cytoplasm, nucleus with nucleus, nucleolus with nucleolus and plastid with plastid. The gametes may be motile (some Algae) or non-motile, as in Spirogyra, Mucor, Basidiobolus, &c. In many of the lower plants and in all higher plants there is a difference in size in the fusing cells, the male cell being the smaller. The reduction in size is due to the absence of cytoplasm, which is in some cases so small in amount that the cell consists mainly of a nucleus. In all cases of complete sexual differentiation the egg-cell is quiescent; the male cell may be motile or non-motile. In many of the Fungi the non-motile male cell or nucleus is carried by means of a fertilizing tube actually into the interior of the egg-cell, and is extruded through the apex in closing proximity to the egg nucleus. In the Florideae, Lichens and Laboulbeniaceae the male cell is a non-motile spermatium, which is carried to the female organ by movements in the water. In Monoblepharis, one of the lower Fungi, in some Algae, in the Vascular Cryptograms, in Cycads (Zamia and Cycas), and in Ginkgo, an isolated genus of Gymnosperms, the male cell is a motile spermatozoid with two or more cilia. In the Algae, such as Fucus, Volvox, Oedogonium, Bulbochaete, and in the Fungus Monoblepharis, the spermatozoid is a small oval or elongate cell containing nucleus, cytoplasm and sometimes plastids. In the Characeae, the Vascular Cryptogams, in Zamia and Cycas, and in Ginkgo, the spermatozoids are more or less highly modified cells with two or more cilia, and resemble in many respects, both in their