Page:EB1911 - Volume 22.djvu/493

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

as the vehicle of heredity and to transmit the characters of parent to offspring. In the present state of our knowledge, therefore, the peculiar chromatin-granules must be regarded as an integral part, perhaps even the most essentially and primarily important portion, of the living substance. At the same time it must be borne in mind that the term “chromatin” does not denote a definite chemical substance, to be recognized universally by hard and fast chemical tests. The chromatin of different organisms or cells may behave quite differently in relation to stains or other reactions; and if it be true that it is the chromatin which determines the nature and activities of the cell, it follows that no two cells which differ from one another in any way can have their chromatin exactly similar. The conception of chromatin is one based upon its relations to the vital activities and life cycle, as a whole, of the organism or cell, and not upon any definable material, that is chemical and physical, properties.

The importance of protoplasm, as the physical and material basis of life, has caused it to be the subject in recent years of much minute and laborious research. It seems obvious that matter so peculiarly endowed must possess a complexity of structure and organization far exceeding that which at first sight meets the eye. Some biologists have attacked the problem of the ultimate constitution of protoplasm from a purely theoretical standpoint, and have framed hypotheses of an ultramicroscopic constitution sufficient, in their opinion, to explain, or at least to throw light upon, the vital activities of the living substance. Others, proceeding by more empirical methods, have attempted to lay bare the structure of protoplasm by means of the refinements of modern microscopical technique, or to solve the question of its constitution by means of chemical and physiological investigation. Hence a convenient distinction, not always easy, however, to maintain in practice, is drawn between speculative and empirical theories of protoplasm.

1. Speculative theories have come with the greatest frequency from those who have attempted to find a material explanation for the phenomena of heredity (q.v.). As instances may be mentioned more particularly the “gemmules” of Darwin, the “pangenes” of de Vries, the “plastidules” of Haeckel, and the “biophores” of Weismann. These theories have been ably brought together and discussed by Delage, who has included them all under the term “micromerism,” since they agree in the assumption that the living substance contains, or consists of, a vast number of excessively minute particles—i.e. aggregates or combinations of molecules, which give to the protoplasm its specific properties and tendencies (“idioplasm” of Nägeli). In other cases the assumption of invisible protoplasmic units has been inspired by a desire either to explain the general vital and assimilative powers of protoplasm, as, for example, the “micellae” of Nägeli and the “plasomes” of Wiesner, or to elucidate the mechanism of some one function, such as the “inotagmas” of Engelmann, assumed to be the agents of contractility. In general, it may be said of all these speculations either that they can only be extended to all vital phenomena by the help of so many subordinate hypotheses and assumptions that they become unworkable and unintelligible, or that they only carry the difficulties a step further back, and really explain nothing. Thus it is postulated for Wiesner's hypothetical plasomes that they possess the power of assimilation, growth and reproduction by division; in other words, that they are endowed with just those properties which constitute the unexplained mystery of living matter.

2. Empirical theories of protoplasm differ according as their authors seek to find one universal type of structure or constitution common to all conditions or differentiations of the living substance, or, on the contrary, are of opinion that it may vary fundamentally in different places or at different times. From these two points of view protoplasm may be regarded either as monomorphic or polymorphic (Fischer). The microscopical investigation of protoplasm reveals at the first glance a viscid, slimy or mucilaginous substance, in which is embedded an immense number of granules, for the most part very tiny. Very rarely are these granules absent, and then only from a portion of the protoplasm, and only temporarily. Hence many authorities have regarded the minute granules—the “microsomes” of Hanstein—as themselves the ultimate living units of protoplasm, in opposition to those who would regard them merely as “metaplastic” substances, i.e. as the heterogeneous byproducts of metabolism and vital activity. The granular theory, as this conception of the living substance is called, has received its extreme elaboration at the hands of Altmann, whose standpoint may be taken as typical of this class of theories. After demonstrating the universal occurrence of granules in protoplasm, Altmann has compared each individual granule to a free-living bacterium, and thus regards a cell as a colony of minute organisms, namely the granules or bio blasts, as he has termed them, living embedded in a common matrix, like a zoogloea colony of bacteria. Of this theory it may be remarked, firstly, that it brings us no nearer to an explanation of vital phenomena than do the plasomes of Wiesner; secondly, that to consider bacteria as equivalent, not to cells, but to cell granules, is to assume for this class of organisms a position with regard to the cell theory which is, to say the least, doubtful; and, thirdly, that the observations of the vast majority of competent microscopists furnish abundant support for the statement that granules of protoplasm do not lie free in a structureless matrix, but are embedded in the substance of a minute and delicate framework or morphoplasm, which in its turn is bathed by a watery fluid or enchylema permeating the whole substance. The upholders of the granular theory deny the existence of the framework, or explain it as due to an arrangement of the granules, or as optical effect produced by the matrix between the granules. Amongst those, on the other hand, who assert the existence of a framework distinct from granules and enchylema, the utmost diversity of opinion prevails with regard to the true structural relations of these three parts and the role played by each in the exercise of vital functions. Some have regarded the framework as made up of a tangle of separate fibrillae (filar theory)—a view more especially connected with the name of Flemming—but most are agreed that it represents the appearance of a reticulum or network with excessively fine meshes, usually from ½ to 1 μ in diameter. The reticulum carries the granules at its nodal points, and is bathed everywhere by the enchylema. Even with so much in common, however, opinions are still greatly at variance. In the first place, the majority of observers interpret the reticulum as the expression of an actual spongy framework, a network of minute fibrillae ramifying in all planes. While, however, Heitzmann, following the speculations of Brücke, considered the framework itself to be actively contractile and the seat of all protoplasmic movement, an opposite point of view is represented by the writings of Leydig, Schäfer and others, who regard the reticulum merely as a kind of supporting framework or spongioplasm, in which is lodged the enchylema or hyaloplasm, considered to be itself the primary motile and living substance. Bütschli, on the other hand, has pointed out the grave difficulties that attend the interpretation of the reticulum as a fibrillar framework, in view of the distinctly fluid consistence of, at any rate, most samples of protoplasm. For if the substance of the framework be assumed to be of a firm, solid nature, then the protoplasm as a whole could not behave as a fluid, any more than could a sponge soaked in water. On the other hand, the hypothesis of a fluid fibrillar framework leads to a physical impossibility, since one liquid cannot be permanently suspended in another in the form of a network. Bütschli therefore interprets the universally present reticulum as a meshwork of minute lamellae, forming a honeycombed or alveolar structure, similar to the arrangement of fluid lamellae in a fine foam or lather, in which the interstices are filled, not with air but with another fluid; in other words, the structure of protoplasm is that of an exceedingly fine emulsion of two liquids not miscible with one another.

It may be claimed for the alveolar theory of Bütschli that it throws light upon many known facts relating to protoplasm. It interprets the reticulum as the optical section of a minute foam-like structure and permits the formation of protoplasmic striations and of apparenf fibrillae as the result of linear or radiating dispositions of the alveolar