Page:EB1911 - Volume 23.djvu/135

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
118
REPRODUCTION
[ANIMALS

confirmed the observation in the case of some other insects a few years later, whilst other observers have extended the observation to over a hundred species, In all these cases half the spermatozoa differ from the other half by the presence of what E. B. Wilson calls the “X-element,” and which, in the simplest cases, occurs as an unpaired chromosome of the mother cell which passes into one and not the other of the two spermatozoa formed from that mother cell. The matter is still obscure, and it is not certain whether the facts are peculiar to insects or have a parallel in spermatogenesis universally. According to E. B. Wilson, the facts demonstrate that eggs fertilized by spermatozoa with the X-element invariably produce females (see Sex). The female gamete or ovum is in a large number of cases expanded by the presence of food-yolk and protective swathings to form the visible mass known as an egg, and the production of embryos from eggs has been studied from the time of Aristotle and Pliny. Galen had described the human ovaries as testes muliebres, and W. Harvey in 1651 showed that the chick arose from the cicatricula of the yolk of the egg, compared these early stages with corresponding stages in the uterus of mammals, and laid down the general proposition—ovum esse primordium commune omnibus animalibus—that the ovum is a starting point common to all animals. In 1664 N. Steno identified the sexual organ of the mammalian female with that of sharks, and first named it the ovary. In 1672 R. De Graaf described the structure of the ovary in birds and mammals, observed the ovum in the oviduct of the rabbit, and repeated Harvey's statement as to the universal occurrence of ova, although he mistook for ova the follicles that now bear his name. In 1825 J. E. Purkyne described the germinal vesicle in the chick, thus distinguishing between the structure of the egg as a whole and the essential germinal area, and in 1827 K. E. von Baer definitely traced the ovum back from the uterus to the oviduct and thence to its origin within the Graafian follicle in the ovary, and thus paved the way for identification of the ovum as a distinct cell arising from the germinal tissue of the ovary. The ovum or female gamete, unlike the spermatozoon, is a large cell, in most cases visible to the naked eye even in the ovary. Also, in definite contrast with the spermatozoon, it is a passive non-motile cell, although in certain cases it is capable of protruding pseudopodia. It is usually spherical, contains a large nucleus, a centrosome and abundant protoplasm, and is generally enclosed in a stout membrane which may or may not have a special aperture known as the micropyle. The protoplasm of all eggs contains nutritive material for the nourishment of the future embryo, and this material may be sufficient in quantity to make the whole cell, although remaining microscopic, conspicuously large, or to expand it to the relatively enormous mass of the yellow yolk of a fowl's egg. Finally, the cellular nature of the ovum is frequently further disguised by its being enclosed in a series of membranes such as the albumen and shell of the fowl's egg. Such complexities are ancillary to the growth or protection of the future embryo, and from the general biological point of view the ovum is to be regarded as a specialized cell derived from the germinal tissue of the ovary, just as the spermatozoon is a specialized cell derived from the corresponding stock of germinal material in the testis. The number of ova produced varies from a very few, as in mammals and birds, to a very large number, as in the herring and many invertebrates, but in all cases the number is relatively small compared with that of the spermatozoa produced by the male of the same species. The details of ovogenesis are more sharply divided than in the case of spermatogenesis into processes connected with the production of a crop of large cells bloated with food-yolk, and the peculiar nuclear changes. The latter changes are generally spoken of as the maturation of the ovum, and in most cases do not begin until the full size has been attained. As in the nuclear changes of spermatogenesis, the details differ in different animals, but the salient feature is that the mature ovum contains, like the ripe spermatozoon, half the number of chromosomes normal to the tissue cells of the animal to which it belongs. The simplest form in which the reduction takes place is that the nucleus of the ovum divides by an ordinary division, each chromosome splitting and sharing itself between the daughter nuclei. Of these nuclei one is extruded from the egg, forming what is called a polar body, and this polar body may again divide by a reducing division, so as to form two polar bodies, each with half the normal number of chromosomes. Finally, the daughter nucleus, remaining in the ovum, also divides by a reducing division, and one of the segments remains to form the nucleus of the ripe ovum, with half the normal number of chromosomes, whilst the other is extruded as a polar body. Very many suggestions as to the meaning of the extrusion of the polar bodies have been made, but the least fanciful of these is to regard the ovum ready for maturation as homologous with the cell about to divide into four spermatozoa; in each case the nucleus divides twice and one of the divisions is a reducing division, so that four daughter nuclei are formed each with half-the normal number of chromosomes. Many spermatozoa are required, and each of the four becomes the nucleus of a complete active cell; relatively few ova are required, but each has a large protoplasmic body, and only one of the four becomes a functional mature egg, the other three being simply extruded and so to say wasted. It must be remembered, however, that there is no inherent probability in favour of the apparently simplest explanation of a very complex biological process. It is also to be noted that in many cases the first polar body does not divide, and it is not clearly established that when the first polar body remains single, it is always the result of a normal nuclear division.

When the mature ova and spermatozoa come together in one of the various ways to be discussed later, fertilization, the conjugation of the gametes to form the zygote, occurs. Alcmaeon (580 B.C.) is believed first to have laid down that fertilization in animals and plants consisted in the material union of the sexual products from both sexes, but it was not until 1761 that it was established experimentally by J. T. Kölreuter's work on the hybridization of plants. In 1780 L. Spallanzani artificially fertilized the eggs of the frog and tortoise, and successfully introduced seminal fluid into the uterus of the bitch, but came to the erroneous conclusion that it was the fluid medium and not the spermatozoa that caused fertilization. This error was corrected in 1824 by J. L. Prevost and J. B. Dumas, who showed that filtration destroyed the fertilizing power of the fluid. In 1843 M. Barry observed spermatozoa within the egg of the rabbit, whilst in 1849 R. Leuckart observed the fertilization of the frog's egg, and in 1851 H. Nelson noticed the entrance of spermatozoa to the egg of Ascaris, whilst in 1854 a series of observations published independently by T. L. W. Bischoff and Allen Thomson finally and definitely established the fact that ova were fertilized by the actual entrance of spermatozoa. Further advances in microscopical methods enabled a series of observers, of whom the most notable were E. van Beneden, H. Fol and O. Hertwig, to follow and record the details of the process. They made it clear that the chief event in fertilization was entrance into the ovum of the nucleus or head of the spermatozoon where it formed the “male pro nucleus,” which gradually approached and fused with the female pronucleus or residual nucleus of the ovum. Still later observers, of whom E. B. Wilson is the most conspicuous, have studied the details of the process in many different animals and have shown that the nucleus of the spermatozoon invariably enters the ovum, that the centrosome generally does so, and that the cytoplasm usually plays no part. The nucleus of the zygote or fertilized ovum, then, possesses the number of chromosomes normal in the tissue cells of the animal to which it belongs, but of these half belong to the female gamete and are derived from the germ plasm of the parental ovary, and half to the male gamete or spermatozoon, derived from the germ plasm of the parental testis. The stimulus which leads to and induces the conjugation of the gametes appears to be chemo tactic and to consist of some substance positively attractive to the male gamete, liberated by the mature female gamete, but the attraction is mutual, and in the final stages of approach a protoplasmic outgrowth of the ovum towards the spermatozoon frequently occurs. The