Page:EB1911 - Volume 23.djvu/40

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
REFRACTION
27


the focal plane of the objective O there is a scale Sc, exact reading being made by a micrometer Z. If a large quantity of liquid be available it is sufficient to dip the refractometer perpendicularly into a beaker containing the liquid and to transmit light into the instrument by means of a mirror. If only a smaller quantity be available, it is enclosed in a metal beaker M, which forms an extension of the instrument, and the liquid is retained there by a plate D. The instrument is now placed in a trough B, containing water and having one side of ground glass G; light is reflected into the refractometer by means of a mirror S outside this trough. An accuracy of 3·7 units in the 5th decimal place is obtainable.


Fig. 6.—Zeiss’s Dipping Refractometer.

The Pulfrich refractometer is also largely used, especially for liquids. It consists essentially of a right-angled glass prism placed on a metal foundation with the faces at right angles horizontal and vertical, the hypotenuse face being on the support. The horizontal face is fitted with a small cylindrical vessel to hold the liquid. Light is led to the prism at grazing incidence by means of a collimator, and is refracted through the vertical face, the deviation being observed by a telescope rotating about a graduated circle. From this the refractive index is readily calculated if the refractive index of the prism for the light used be known: a fact supplied by the maker. The instrument is also available for determining the refractive index of isotropic solids. A little of the solid is placed in the vessel and a mixture of monobromnaphthalene and acetone (in which the solid must be insoluble) is added, and adjustment made by adding either one or other liquid until the border line appears sharp, i.e. until the liquid has the same index as the solid.


Fig. 7.

The Herbert Smith refractometer (fig. 7) is especially suitable for determining the refractive index of gems, a constant which is most valuable in distinguishing the precious stones. It consists of a hemisphere of very dense glass, having its plane surface fixed at a certain angle to the axis of the instrument. Light is admitted by a window on the under side, which is inclined at the same angle, but in the opposite sense, to the axis. The light on emerging from the hemisphere is received by a convex lens, in the focal plane of which is a scale graduated to read directly in refractive indices. The light then traverses a positive eye-piece. To use the instrument for a gem, a few drops of methylene iodide (the refractive index of which may be raised to 1·800 by dissolving sulphur in it) are placed on the plane surface of the hemisphere and a facet of the stone then brought into contact with the surface. If monochromatic light be used (i.e. the D line of the sodium flame) the field is sharply divided into a light and a dark portion, and the position of the line of demarcation on the scale immediately gives the refractive index. It is necessary for the liquid to have a higher refractive index than the crystal, and also that there is close contact between the facet and the lens. The range of the instrument is between 1·400 and 1·760, the results being correct to two units in the third decimal place if sodium light be used.  (C. E.*) 

II. Double Refraction

That a stream of light on entry into certain media can give rise to two refracted pencils was discovered in the case of Iceland spar by Erasmus Bartholinus, who found that one pencil had a direction given by the ordinary law of refraction, but that the other was bent in accordance with a new law that he was unable to determine. This law was discovered about eight years later by Christian Huygens. According to Huygens fundamental principle, the law of refraction is determined by the form and orientation of the wave-surface in the crystal—the locus of points to which a disturbance emanating from a luminous point travels in unit time. In the case of a doubly refracting medium the Wave-surface must have two sheets, one of which is spherical, if one of the pencils obey in all cases the ordinary law of refraction. Now Huygens observed that a natural crystal of spar behaves in precisely the same way whichever pair of faces the light passes through, and inferred from this fact that the second sheet of the wave-surface must be a surface of revolution round a line equally inclined to the faces of the rhomb, i.e. round the axis of the crystal. He accordingly assumed it to be a spheroid, and finding that refraction in the direction of the axis was the same for both streams, he concluded that the sphere and the spheroid touched one another in the axis.

So far as his experimental means permitted, Huygens verified the law of refraction deduced from this hypothesis, but its correctness remained unrecognized until the measures of W. H. Wollaston in 1802 and of E. T. Malus in 1810. More recently its truth has been established with far more perfect optical appliances by R. T. Glazebrook, Ch. S. Hastings and others.

In the case of Iceland spar and several other crystals the extraordinarily refracted stream is refracted away from the axis, but Jean Baptiste Biot in 1814 discovered that in many cases the reverse occurs, and attributing the extraordinary refractions to forces that act as if they emanated from the axis, he called crystals of the latter kind “attractive,” those of the former “repulsive.” They are now termed “positive” and “negative” respectively; and Huygens’ law applies to both classes, the spheroid being prolate in the case of positive, and oblate in the case of negative crystals. It was at first supposed that Huygens’ law applied to all doubly refracting media. Sir David Brewster, however, in 1815, while examining the rings that are seen round the optic axis in polarized light, discovered a number of crystals that possess two optic axes. He showed, moreover, that such crystals belong to the rhombic, monoclinic and anorthic (triclinic) systems, those of the tetragonal and hexagonal systems being uniaxal, and those of the cubic system being optically isotropic.

Huygens found in the course of his researches that the streams that had traversed a rhomb of Iceland spar had acquired new properties with respect to transmission through a second crystal. This phenomenon is called polarization (q.v.), and the waves are said to be polarized—the ordinary in its principal plane and the extraordinary in a plane perpendicular to its principal plane, the principal plane of a wave being the plane containing its normal and the axis of the crystal. From the facts of polarization Augustin Jean Fresnel deduced that the