Page:EB1911 - Volume 23.djvu/47

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.
34
REFRIGERATING


to minimize the loss of time, two vessels are provided which can be used alternately as generators and absorbers.

Applications.—Apart from the economical working of the machine itself, Whatever system may be adopted, it is of importance that cold once produced should not be wasted, and it is therefore necessary to use some form of insulation to protect the vessels in which liquids are being cooled, or the rooms of ships' holds in which the freezing or storage processes are being carried on. This insulation generally consists of materials such as charcoal, silicate cotton, granulated cork, small pumice, hair-felt, sawdust, &c., held between layers of wood or brick, and forming a more or less heat-tight box. There is no recognized standard of insulation. For a cold store to be erected inside a brick or stone building, and to be maintained at an internal temperature of from 18° to 20° F., a usual plan is shown in fig. 5.

Fig. 5.—Insulation of a Cold Store.

The same insulation is used for the floors and ceilings, except that the wearing surface of the floor is generally made thicker than the inside lining of the sides. Should the walls or floor be damp, Waterproof paper is added. Granulated cork has practically the same insulating properties as silicate cotton, and the same thicknesses may be used. About ro in. of flake charcoal and vegetable silica, or 11 of small pumice, are required to give the same protection as 7 in. of good silicate cotton. Cork bricks made of compressed granulated cork are frequently used, a thickness of about 5 in. giving the same protection as 7 in. of silicate cotton. The walls and ceilings are finished od with a smooth coating of hard cement and the floors are protected by cement or asphalt, according to the nature of the traffic on them. For lager-beer cellars and fermenting rooms, for bacon-curing cellars, and for similar purposes, brick walls with single or double air spaces are used, and sometimes a space filled with, silicate cotton or other insulating material. In Australia and New Zealand pumice, which is found in enormous quantities in the latter country, takes the place of charcoal and silicate cotton. In Canada air spaces are largely used either alone or in combination with silicate cotton or planer shavings. The air spaces, two or three in number, are formed between two layers of tongued and grooved wood, and the total thickness of the insulation is about the same as when silicate cotton alone is used. On board ship charcoal has been almost entirely employed, but silicate cotton and granulated cork are sometimes used. The material is either placed directly up to the skin of the vessel, and- kept in place by a double lining of wood inside, in which case a thickness of about ro in. is used depending upon the depth of the frames, or it is placed between two layers of wood, with an air space next the skin, in which case about 6 in. of flake charcoal is generally sufficient for the insulation of the holds, though for deck-houses and other parts exposed to the sun the thickness must be greater. A layer of sheet zinc or tin has frequently to be used as protection from rats. Given a certain allowable heat transmission, the principal points to be considered in Connexion with insulation are, first cost, durability, weight and space occupied, the two last named being specially important factors on board ship. No exact rules can be laid down, as the conditions vary so greatly; and though experiments have been made to determine the actual heat conduction of various materials per unit of surface, thickness and temperature difference, the experience of actual practice is at present the only accepted guide. With compressed-air machines which discharge the cold air direct into the insulated room or hold, a snow box is provided close to the outlet of the expansion cylinder to catch the snow and congealed oil. The air is distributed by means of wood air trunks with openings controlled by slides, and similar trunks are provided in connexion with the suction of the com presser to conduct the air back to the machine. With liquid machines of the compression and absorption system, the rooms are either cooled by means of cold pipes or surfaces placed in them, or by a circulation of air cooled in an apparatus separated from the rooms. The cold pipes may be direct-expansion pipes in which the liquid evaporates, or they may be pipes or walls through which circulates an uncongealable brine previously cooled to the desired temperature. The pipes are placed on the ceilings or sides according to circumstances, but they must be arranged so as to induce a circulation of air throughout the compartment and ensure every part being cooled. With what is termed the air circulation system the air is generally circulated by means of a fan, being drawn from the rooms through ducts, passed over a cooler, and returned again to the rooms by other ducts. In some coolers the cooling surfaces consist of direct-expansion pipes placed in clusters of convenient form; in others brine pipes are used; in others there is a shower of cold brine, and in some cases combinations of cold pipes and brine showers. Whether pipes in the rooms or air circulation give the best results is to some extent a matter of opinion, but at the present time the tendency is decidedly in favour of air circulation, at any rate for general cold storage purposes. Whichever system be adopted, it is important for economical reasons that ample cooling surface be allowed, and that all surfaces be kept clean and active, to make the difference between the temperature of the evaporating liquid and the rooms as small as possible. Small surfaces reduce first cost, but involve higher working expenses by decreasing the value of T1/(T2−T1), and thus demanding more energy, and consequently more fuel, to effect the given result than if larger surfaces were employed.

FIG. 6.-General Arrangement of an Ice Factory.

The general arrangement of an ice factory for producing can ice is shown in fig. 6. The water to be frozen is contained in galvanized or terned steel moulds suspended in a tank filled to the proper level with brine maintained at the desired temperature. The moulds are frequently arranged in frames, so that by means of an overhead crane one complete row is lifted at a time. When the water is frozen the moulds are dipped in a tank containing warm water, and on being tipped the blocks of ice fall out. Ordinary water contains air, and ice made from it is generally opaque, due to the inclusion of numerous small air-bubbles. To produce clear ice the water must be agitated during the freezing process, or previously boiled to get rid of the air. Distilled water is frequently used, as well as the water produced by the condensation of the steam from the engine, which of course must be thoroughly purified and filtered. It should be noted, however, that with an icemaking plant of moderate size and a steam-engine of good construction the weight of steam used will not nearly equal the weight of ice produced, so that the difference must be made up either by distillation, which is a costly process, or by ordinary water. Can ice is usually made in blocks weighing 56, 112 or 224 ℔, and from 4 to 8 in. thick. For cell ice ordinary water is used, agitated