Page:EB1911 - Volume 28.djvu/203

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
VOLCANO
187


5276 ft. above sea-level. The walls of the spine, inclined at from 75° to 90° to the horizon, were apparently slickensided, or polished and scratched by friction: masses were occasionally detached and vapours were continually escaping. Several smaller needles were also formed. Some observers regarded the great spine as a solidified plug of lava from a previous outburst, expelled on a renewal of activity. Lacroix, however, believed that it was formed by the extrusion of an enormous mass of highly viscid magma, perhaps partly solidified before emission, and he compared the formation of the dome in the crater to the structure on Santorin in 1866, described by Fouqué as a “cumulo-volcano.” Professor H. F. Cleland has suggested a comparison with the cone of andesite in the crater of the volcano of Toluca in Mexico, and it is said that similar formations have been observed in the volcanoes of the Andes. Dr Tempest Anderson, on visiting Pelé in 1907, found a stump of the spine, consisting of a kind of volcanic agglomerate, rising from a cone of talus formed of its ruins.

The Crater.—The eruptive orifice in normal volcano—the bocca of Italian vulcanologist's—is usually situated at the bottom of a depression or cup, known as the crater. This hollow is formed and kept open by the explosive force of the elastic vapours, and when the volcano becomes dormant or extinct it may be closed, partly by rock falling from its crumbling walls and partly by the solidification of the lava which it may contain. If a renewed outburst occurs, the floor of the old crater may reopen or a new outlet may be formed at some weak point on the side of the mountain: hence a crater may, with regard to position, be either terminal or lateral. The position of the crater will evidently be also changed on any shifting of the general axis of eruption. In shape and size the crater varies from time to time, the walls being perhaps breached or even blown away during an outburst. Hence the height of a volcanic mountain in activity, measured to the rim of the crater or the terminal peak, is not constant. Vesuvius, for example, suffered a reduction of several hundred feet during the great eruption of 1906, the east side of the cone having lost, according to V. R. Matteucci, 120 metres.

Whilst in many cases the crater is a comparatively small circular hollow around the orifice of discharge, it forms in others a large bowl-like cavity, such as is termed in some localities a “caldera.” In the Sandwich Islands the craters are wide pits bounded by nearly vertical walls, showing stratified and terraced lavas and floored by a great plain of black basalt, sometimes with lakes of molten lava. Professor W. H. Pickering compares the lava-pits of Hawaii to the crater-rings in the moon. Some of the pit-craters in the Sandwich Islands are of great size, but none comparable with the greatest of the lunar craters. Dr G. K. Gilbert, however, has suggested that the ring-shaped pits on the moon are not of volcanic origin, but are depressions formed by the impact of meteorites. Similarly the “crater” of Coon Butte, near Canyon Diablo, in Arizona, which is 4000 ft. in diameter and 500 ft. deep, has been regarded as a vast pit due to collision of a meteorite of prodigious size. Probably the largest terrestrial volcanic crater is that of Aso-san, in the isle of Kiushiu (Japan), which is a huge oval depression estimated by some observers to have an area of at least 100 sq. m. Some of the large pit-craters have probably been formed by subsidence, the cone of a volcano having been eviscerated by extravasation of lava, and the roof of the cavity having then subsided by loss of support. The term caldera has sometimes been limited to craters formed by such collapse.

On the floor of the crater, ejected matter may accumulate as a conoidal pile; and if such action be repeated in the crater of the new cone, a succession of concentric cones will ultimately be formed. The walls of a perfect crater form a ring, giving the cone a truncated appearance, but the ring may suffer more or less destruction in the course of the history of the mountain. A familiar instance of such change is afforded by Vesuvius. The mountain now so called, using the term in a restricted sense, is a huge composite cone built up within an old crateral hollow, the walls of which still rise as an encircling rampart on the N. and N.E. sides, and are known as Monte Somma; but the S. and S.W. sides of the ancient crater have disappeared, having been blown away during some former outburst, probably the Plinian eruption of 79. In like manner the relics of an old crater form an amphitheatre partially engirdling the Soufrière in St Vincent, and other examples of “Somma rings” are known to vulcanologist's.

Much of the fragmental matter ejected from a volcano rolls down the inside of the crater, forming beds of tuff which incline towards the central axis, or have a centroclinal dip. On the contrary, the sheets of cinder and lava which form the bulk of the cone slope away from the axis, or have a dip that is sometimes described as pericentric or qua-qua-versal. According to the old “crater-of-elevation theory,” held especially by A. von Humboldt, L. von Buch and Élie de Beaumont, this inclination of the beds was regarded as mainly due to upheaval. It was contended that the volcanic cone owed its shape, for the most part, to local distension of the ground, and was indeed comparable to a huge blister of the earth's crust, burst at the summit to form the “elevation crater.” Palma, in the Canary Islands, was cited as a typical example of such a formation. This view was opposed mainly by Poulett-Scrope, Sir Charles Lyell and Constant Prévost, who argued that the volcano, so far from being bladder-like. Was practically a solid cone of erupted matter: hence this view came to be known as the “crater-of-eruption theory.” Its general soundness has been demonstrated whenever an insight has been obtained into the internal structure of a volcano. Thus, after the eruption of Krakatoa in 1883 a magnificent natural section of the great cone of Rakata, at the S. end of the island, was exposed—the northern half having been blown away—and it was then evident that this mountain was practically a solid cone, built up of a great succession of irregular beds of tuff and lava, braced together by intersecting dykes. The internal architecture of a volcano is rarely so well displayed as in this case, but dissections of cones, more or less distinct, are often obtained by denudation. It should be mentioned that, in connexion with the structures called laccoliths, there may have been an elevation, or folding, and even faulting, of the superficial rocks by subterranean intrusion of lava; but this is different from the local expansion and rupture of the ground required by the old theory. It may be noted, however, that in recent years the view of elevation, in a modified form, has not been without supporters.

Where the growth of a volcanic mound takes place from within, as in certain steep-sided trachytic cones, there may be no perceptible crater or external outlet. Again, there are many volcanoes which have no crater at the summit, because the eruptions always take place from lateral outlets. Even when a terminal pit is present, the lava may issue from the body of the mountain, and in some cases it exudes from so many vents or cracks that the volcano has been described as “sweating fire.”

Parasitic Cones.—In the case of a lofty volcano the column of lava may not have sufficient ascensional force to reach the crater at the summit, or at any rate it finds easier means of egress at some weak spot, often along radial cracks, on the flanks of the mountain. Thus at Etna, which rises to a height of more than 10,800 ft., the eruptions usually proceed from lateral fissures, sometimes at least half-way down the mountain-side. When fragmental materials are ejected from a lateral vent a cinder-cone is formed, and by frequent repetition of such ejections the flanks of Etna have become dotted over with hundreds of scoria-cones much like the puys of Auvergne, the largest (Monte Minardo) rising to a height of as much as 750 ft. Hills of this character, seated on the parent mountain, are known as parasitic cones, minor cones, lateral cones, &c.

Such subordinate cones often show a tendency to a linear arrangement, rising from vents or bocche along the floor of a line of fissure. Thus in 1892 a chain of five cones arose from a rift on the S. side of Etna, running in a N. and S. direction, and the hills became known as the Monti Silvestri, after Professor Orazio Silvestri of Catania. This rift, however, was but a continuation of a fissure from which there arose in 1886 the series of cones called the Monti Gemmellaro, while this in turn was a prolongation of a rent opened in 1883. The eruption on Etna in the spring of 1910 took place along the same general direction, but at a much higher elevation. The tendency for eruptions to be renewed along old lines of weakness, which can be readily opened afresh and extended, is a feature well known to vulcanologists.

The small cones which are frequently thrown up on lava streams were admirably exemplified on Vesuvius in the eruption of 1855 and figured by J. Schmidt. The name of “driblet cones” was given by J. D. Dana to the little cones and pillars formed by jets of lava projected from blowing holes at Kilauea, the drops of lava remaining plastic and cohering as they fell. Such clots may form columns and pyramids, with almost vertical sides. Steep-sided cones more or less of this character occur elsewhere, but are usually built up around spiracles. Small cones formed by mere dabs of lava are known trivially as “spatter cones.”

Fissure Eruptions.—In certain parts of the world there are vast tracts of basaltic lava with little or no evidence of cones or of pyroclastic accompaniment. To explain their formation, Baron F. von Richthofen suggested that they represent great floods of lava which were poured forth not from ordinary volcanic craters with more or less explosive violence, but from great fissures in the earth's crust, whence they may have quietly welled forth and spread as a deluge over the surface of the country. The eruptions were thus effusive rather than explosive. Such phenomena, constituting a distinct type of vulcanism, are distinguished as fissure eruptions or massive eruptions—terms which suggest the mode of extrusion and the character of the extruded matter. As the lava in such outflows must be very fusible, it is generally of basaltic type, like that of Hawaii: indeed, the Hawaiian volcanoes, with their quiet emission of highly fluent lavas, connect the fissure eruptions with the “central eruptions,” which are usually regarded as representing the normal type of activity. At the present day true fissure eruptions seem to be of rather limited occurrence, but excellent examples are furnished by Iceland. Here there are vast fields of black basalt, formed of sheets of lava which have issued from long chasms, studded in most cases with rows of small cones, but these generally so insignificant that they make no scenic features and might be readily obliterated by denudation. Dr T. Thoroddsen enumerates 87 great rifts and lines of cones in Iceland, and even the larger cones of Vesuvian type are situated on fissures.

It is believed that fissure eruptions must have played a far more important part in the history of the earth than eruptions of the familiar cone-and-crater type, the latter representing indeed only