Page:Electronics Technician - Volume 7 - Antennas and Wave Propagation - NAVEDTRA 14092.pdf/71

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

Figure 3-24.—Simple electric fields.


Figure 3-25.—Magnetic field on a single wire.


the H lines take opposite directions between adjacent turns, the field between the turns is canceled. Inside and outside the coil, Where the direction of each H field is the same, the fields join and form continuous H lines around the entire coil. A similar action takes place in a waveguide.


Figure 3-26.—Magnetic field on a coil.


BOUNDARY CONDITIONS IN A WAVEGUIDE

The travel of energy down a waveguide is similar, but not identical, to the travel of electromagnetic waves in free space. The difference is that the energy in a waveguide is confined to the physical limits of the guide. Two conditions, known as BOUNDARY CONDITIONS, must be satisfied for energy to travel through a waveguide.

The first boundary condition (illustrated in fig. 3-27, view A can be stated as follows:

For an electric field to exist at the surface of a conductor, it must be perpendicular to the conductor.


Figure 3-27.—E field boundary condition.


The opposite of this boundary condition, shown in view B, is also true. An electric field CANNOT exist parallel to a perfect conductor.

The second boundary condition, which is illustrated in figure 3-28, can be stated as follows:

For a varying magnetic field to exist, it must form closed loops in parallel with the conductors and be perpendicular to the electric field.

3-13