Page:Electronics Technician - Volume 7 - Antennas and Wave Propagation - NAVEDTRA 14092.pdf/9

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

CHAPTER 1

WAVE PROPAGATION

The eyes and ears of a ship or shore station depend on sophisticated, highly computerized electronic systems. The one thing all of these systems have in common is that they lead to and from antennas. Ship's operators who must communicate, navigate, and be ready to fight the ship 24 hours a day depend on you to keep these emitters and sensors operational.

In this volume, we will review wave propagation, antenna characteristics, shore-based and shipboard communications antennas, matching networks, antenna tuning, radar antennas, antenna safety, transmission lines, connector installation and weatherproofing, waveguides, and waveguide couplings. When you have completed this chapter, you should be able to discuss the basic principles of wave propagation and the atmosphere's effects on wave propagation.

THE EARTH'S ATMOSPHERE

While radio waves traveling in free space have little outside influence to affect them, radio waves traveling in the earth's atmosphere have many influences that affect them. We have all experienced problems with radio waves, caused by certain atmospheric conditions complicating what at first seemed to be a relatively simple electronic problem. These problem-causing conditions result from a lack of uniformity in the earth's atmosphere.

Many factors can affect atmospheric conditions, either positively or negatively. Three of these are variations in geographic height, differences in geographic location, and changes in time (day, night, season, year).

To understand wave propagation, you must have at least a basic understanding of the earth's atmosphere. The earth's atmosphere is divided into three separate regions, or layers. They are the troposphere, the stratosphere, and the ionosphere. These layers are illustrated in figure 1-1.

TROPOSPHERE

Almost all weather phenomena take place in the troposphere. The temperature in this region decreases rapidly with altitude. Clouds form, and there may be a lot of turbulence because of variations in the temperature, pressure, and density. These conditions have a profound effect on the propagation of radio waves, as we will explain later in this chapter.

STRATOSPHERE

The stratosphere is located between the troposphere and the ionosphere. The temperature throughout this region is almost constant and there is little water vapor present. Because it is a relatively calm region with little or no temperature change, the stratosphere has almost no effect on radio waves.

IONOSPHERE

This is the most important region of the earth's atmosphere for long distance, point-to-point communications. Because the existence of the ionosphere is directly related to radiation emitted from the sun, the movement of the earth about the sun or changes in the sun's activity will result in variations in the ionosphere. These variations are of two general types: (1) those that more or less occur in cycles and, therefore, can be predicted with reasonable accuracy; and (2) those that are irregular as a result of abnormal behavior of the sun and, therefore, cannot be predicted. Both regular and irregular variations have important effects on radio-wave propagation. Since irregular variations cannot be predicted, we will concentrate on regular variations.


Regular Variations

The regular variations can be divided into four main classes: daily, 27-day, seasonal, and 11-year. We will concentrate our discussion on daily variations,

1-1