Page:Encyclopædia Britannica, Ninth Edition, v. 3.djvu/76

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.
64
ATTRACTION

gravitation in the properties of an aethereal medium diffused over the universe.

" It appears, from his letters to Boyle, that this was his opinion early, and if he did not publish it sooner it proceeded from hence only, that he found he was not able, from experiment and observation, to give a satisfactory account of this medium and the manner of its operation in producing the chief phenomena of nature."[1]

In his Optical Queries, indeed, he shows that if the pressure of this medium is less in the neighbourhood of dense bodies than at great distances from them, dense bodies will be drawn towards each other, and that if the diminution of pressure is inversely as the distance from the dense body the law will be that of gravitation. The next step, as he points out, is to account for this inequality of pressure in the medium ; and as he was not able to do this, he left the explanation of the cause of gravity as a problem to succeeding ages. As regards gravitation the progress made towards the solution of the problem since the time of Newton has been almost imperceptible. Faraday showed that the transmission of electric and magnetic forces is accompanied by phenomena occurring in every part of the intervening medium. He traced the lines of force through the medium ; and he ascribed to them a tendency to shorten themselves and to separate from their neighbours, thus introducing the idea of stress in the medium in a different form from that suggested by Newton ; for, whereas Newton's stress was a hydrostatic pressure in every direction, Faraday's is a tension along the lines of force, combined with a pressure in all normal directions. By showing that the plane of polarisation of a ray of light passing through a transparent medium in the direction of the magnetic force is made to rotate, Faraday not only demonstrated the action of magnetism on light, but by using light to reveal the state of magnetisation of the medium, he " illuminated," to use his own phrase, " the lines of magnetic force."

From this phenomenon Thomson afterwards proved, by strict dynamical reasoning, that the transmission of magnetic force is associated with a rotatory motion of the small parts of the medium. He showed, at the same time, how the centrifugal force due to this motion would account for magnetic attraction.

A theory of this kind is worked out in greater detail in Clerk Maxwell's Treatise on Electricity and Magnetism. It is there shown that, if we assume that the medium is in a state of stress, consisting of tension along the lines of force and pressure in all directions at right angles to the lines of force, the tension and the pressure being equal in numerical value and proportional to the square of the intensity of the field at the given point, the observed electrostatic and electromagnetic forces will be completely accounted for.

The next step is to account for this state of stress in the medium. In the case of electromagnetic force we avail ourselves of Thomson's deduction from Faraday's discovery stated above. We assume that the small parts of the medium are rotating about axes parallel to the lines of force. The centrifugal force due to this rotation produces the excess of pressure perpendicular to the lines of force. The explanation of electrostatic stress is less satisfactory, but there can be no doubt that a path is now open by which we may trace to the action of a medium all forces which, like the electric and magnetic forces, vary inversely as the square of the distance, and are attractive between bodies of different names, and repulsive between bodies of the same names.

The force of gravitation is also inversely as the square of the distance, but it differs from the electric and magnetic forces in this respect, that the bodies between which it acts cannot be divided into two opposite kinds, one positive and the other negative, but are in respect of gravitation all of the same kind, and that the force between them is in every case attractive. To account for such a force by means of stress in an intervening medium, on the plan adopted for electric and magnetic forces, we must assume a stress of an opposite kind from that already mentioned. We must suppose that there is a pressure in the direction of the lines of force, combined with a tension in all directions at right angles to the lines of force. Such a state of stress would, no doubt, account for the observed effects of gravitation. We have not, however, been able hitherto to imagine any physical cause for such a state of stress. It is easy to calculate the amount of this stress which would be required to account for the actual effects of gravity at the surface of the earth. It would require a pressure of 37,000 tons weight on the square inch in a vertical direction, combined with a tension of the same numerical value in all horizontal directions. The state of stress, therefore, which we must suppose to exist in the invisible medium, is 3000 times greater than that which the strongest steel could support.

Another theory of the mechanism of gravitation, that of Le Sage, who attributes it to the impact of "ultramundane corpuscules," has been already discussed in the article ATOM, supra, p. 46.

Sir William Thomson[2] has shown that if we suppose all space filled with a uniform incompressible fluid, and if we further suppose either that material bodies are always generating and emitting this fluid at a constant rate, the fluid flowing off to infinity, or that material bodies are always absorbing and annihilating the fluid, the deficiency flowing in from infinite space, then, in either of these cases, there would be an attraction between any two bodies inversely as the square of the distance. If, however, one of the bodies were a generator of the fluid and the other an absorber of it. the bodies would repel each other.

Here, then, we have a hydrodynamical illustration of action at a distance, which is so far promising that it shows how bodies of the same kind may attract each other. But the conception cf a fluid constantly flowing out of a body without any supply from without, or flowing into it without any way of escape, is so contradictory to all our experience, that an hypothesis, of which it is an essential part, cannot be called an explanation of the phenomenon of gravitation.

Dr Robert Hooke, a man of singular inventive power, in 1671 endeavoured to trace the cause of gravitation to waves propagated in a medium. He found that bodies floating on water agitated by waves were drawn towards the centre of agitation.[3] He does not appear, however, to have followed up this observation in such a way as to determine completely the action of waves on an immersed body.

Professor Challis has investigated the mathematical theory of the effect of waves of condensation and rarefaction in an elastic fluid on bodies immersed in the fluid. He found the difficulties of the investigation to be so great that he has not been able to arrive at numerical results. He concludes, however, that the effect of such waves would be to attract the body towards the centre of agitation, or to repel it from that centre, according as the wave's length is very large or very small compared with the dimensions of the body. Practical illustrations of the effect of such waves have been given by Guyot, Schellbach, Guthrie, and Thomson.[4]

A tuning-fork is set in vibration, and brought near a delicately suspended light body. The body is immediately

  1. Maclaurin's account of Sir Isaac Newton's discoveries.
  2. Proceedings of the Royal Society of Edinburgh, 7th Feb. 1870.
  3. Posthumous Works, edited by R. Waller, pp. xiv and 13-4.
  4. Philosophical Magazine, June 1871.