Page:Experimental researches in chemistry and.djvu/348

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
1831.]
formed on Vibrating Elastic Surfaces.
333

being in large quantity and the vibrations slow. When the surface is thickly covered by sand from a sieve, and the paper tapped with the finger, the manner in which the sand draws up into moving heaps is very beautiful.

55. When a single heap is examined, which is conveniently done by holding a vibrating tuning-fork in a horizontal position, and dropping some lycopodium upon it, it will be seen that the particles of the heap rise up at the centre, overflow, fall down upon all sides, and disappear at the bottom, apparently proceeding inwards; and this evolving and involving motion continues until the vibrations have become very weak.

56. That the medium in which the experiment is made has an important influence, is shown by the circumstance of heavy particles, such as filings, exhibiting all these peculiarities when they are placed upon surfaces vibrating in water (39); the heaps being even higher at the centre than a heap of equal diameter formed of light powder in the air. In water, too, they are formed indifferently upon any part of the plate or membrane which is in a vibratory state. They do not tend to the quiescent lines; but that is merely from the great force of the currents formed in water as already described (38), and the power with which they urge obstacles to the place of greatest vibration.

57. If a glass plate be supported and vibrated (6), its surface having been covered with sand enough to hide the plate, and water enough to moisten and flow over the sand, the sand will draw together in heaps, and these will exhibit the peculiar and characteristic motion of the particles in a very striking manner.

58. The aggregation and motion of these heaps, either in air or other fluids, is a very simple consequence of the mechanical impulse communicated to them by the joint action of the vibrating surface and the surrounding medium. Thus in air, when in the course of a vibration, the part of a plate under a heap rises, it communicates a propelling force upwards to that heap, mingled as it is with air, greater than that communicated to the surrounding atmosphere, because of the superior specific gravity of the former; upon receding from the heap, therefore, in performing the other half of its vibration, it forms a partial vacuum, into which the air, round the heap, enters with