Page:Experimental researches in chemistry and.djvu/365

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
350
On the Forms and States of Fluids
[1831.

107. I have thought it unnecessary to dwell upon the explanation of the circular linear heaps (83. 93. 110) produced on long or circular plates by feeble vibration. They are explicable upon the same principles, account being at the same time taken of the arrangement and proportion of vibrating force in the various parts of the plates.

108. The heaps which constitute crispation (as the word has been used in this paper) are in form, quality, and motion of their parts, the same with what are called stationary undulations; and if the mercury in a small circular basin be tapped at the middle, stationary undulations, resembling the ring-like heaps (83. 110), will be obtained; or if a rectangular frame be made to beat at equal intervals of time on mercury or water, heaps like those of the crispations, arranged quadrangularly at angles of 45° to the frame, will be produced. These effects are in fact the same with those described, but are produced by a cause differing altogether. The first are the result of two progressing and opposed undulations, the second of four: but the heaps of crispations are produced by the power impressed on the fluid hy the vibrating plate; are due to vibrations of that fluid occurring in twice the time of the vibrations of the plate; and have no dependence on progressive undulations, originating laterally, as many of the phenomena described prove. Thus, when the edges were beveled (72. 110), or covered with cloth, or wet sawdust, so that waves reaching the side should be destroyed, or when the limits of the water or plates were round (91) or irregular, still the heaps were produced, and their arrangement square. When the round plate (93) was used, regular crispations were still produced, though, as the water extended over the nodal line, and was there perfectly undisturbed, no progressing and opposed undulations could originate to produce them. Vellum stretched over a ring, and rendered concave by the pressure of the exciting rod, produced the same effect.

109. When a plate of tin, rendered very slightly concave, was attached to a lath (69), so as to have equality of vibratory motion in all its parts, and a little dilute alkali (which would wet the surface) put into it, the crispations formed in the middle, but ceased towards the sides, where, though well-wetted, there was not depth enough of water, and whence also no