Page:Fingerprint Recognition 2013.pdf/4

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

Fingerprint Recognition




capacitive sensor determines each pixel value based on the capacitance measured, made possible because an area of air (valley) has significantly less capacitance than an area of finger (friction ridge skin). Other fingerprint sensors capture images by employing high frequency ultrasound or optical devices that use prisms to detect the change in light reflectance related to the fingerprint. Thermal scanners require a swipe of a finger across a surface to measure the difference in temperature over time to create a digital image.7

Software

The two main categories of fingerprint matching techniques are minutiae-based matching and pattern matching. Pattern matching simply compares two images to see how similar they are. Pattern matching is usually used in fingerprint systems to detect duplicates. The most widely used recognition technique, minutiae-based matching, relies on the minutiae points described above, specifically the location and direction of each point.4

United States Government Evaluations

As mandated by the USA PATRIOT ACT and the Enhanced Border Security Act, NIST managed the Fingerprint Vendor Technology Evaluation (FpVTE) to evaluate the accuracy of fingerprint recognition systems.8 FpVTE was designed to assess the capability of fingerprint systems to meet requirements for both large-scale and small-scale real world applications. FpVTE 2003 consists of multiple tests performed with combinations of fingers (e.g., single fingers, two index fingers, four to ten fingers) and different types and qualities of operational fingerprints (e.g., flat livescan images from visa applicants, multi-finger slap livescan images from present-day booking or background check systems, or rolled and flat inked fingerprints from legacy criminal databases).

The most accurate systems in FpVTE 2003 were found to have consistently very low error rates across a variety of data sets. The variables that had the clearest effect on system accuracy were the number of fingers used and fingerprint quality. An increased number of fingers resulted in higher accuracy: the accuracy of searches using four or more fingers was better than the accuracy of two-finger searches, which was better than the accuracy of single-finger searches.




Page 102 of 166