Page:General Investigations of Curved Surfaces, by Carl Friedrich Gauss, translated into English by Adam Miller Hiltebeitel and James Caddall Morehead.djvu/24

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

surface inclosed within definite limits we assign a total or integral curvature, which is represented by the area of the figure on the sphere corresponding to it. From this integral curvature must be distinguished the somewhat more specific curvature which we shall call the measure of curvature. The latter refers to a point of the surface, and shall denote the quotient obtained when the integral curvature of the surface element about a point is divided by the area of the element itself; and hence it denotes the ratio of the infinitely small areas which correspond to one another on the curved surface and on the sphere. The use of these innovations will be abundantly justified, as we hope, by what we shall explain below. As for the terminology, we have thought it especially desirable that all ambiguity be avoided. For this reason we have not thought it advantageous to follow strictly the analogy of the terminology commonly adopted (though not approved by all) in the theory of plane curves, according to which the measure of curvature should be called simply curvature, but the total curvature, the amplitude. But why not be free in the choice of words, provided they are not meaningless and not liable to a misleading interpretation?

The position of a figure on the sphere can be either similar to the position of the corresponding figure on the curved surface, or opposite (inverse). The former is the case when two lines going out on the curved surface from the same point in different, but not opposite directions, are represented on the sphere by lines similarly placed, that is, when the map of the line to the right is also to the right; the latter is the case when the contrary holds. We shall distinguish these two cases by the positive or negative sign of the measure of curvature. But evidently this distinction can hold only when on each surface we choose a definite face on which we suppose the figure to lie. On the auxiliary sphere we shall use always the exterior face, that is, that turned away from the centre; on the curved surface also there may be taken for the exterior face the one already considered, or rather that face from which the normal is supposed to be drawn. For, evidently, there is no change in regard to the similitude of the figures, if on the curved surface both the figure and the normal be transferred to the opposite side, so long as the image itself is represented on the same side of the sphere.

The positive or negative sign, which we assign to the measure of curvature according to the position of the infinitely small figure, we extend also to the integral curvature of a finite figure on the curved surface. However, if we wish to discuss the general case, some explanations will be necessary, which we can only touch here briefly. So long as the figure on the curved surface is such that to distinct points on itself there correspond distinct points on the sphere, the definition needs no further explanation. But whenever this condition is not satisfied, it will be necessary to take into account twice or several times certain parts of the figure on the sphere. Whence for a similar, or