Page:General Investigations of Curved Surfaces, by Carl Friedrich Gauss, translated into English by Adam Miller Hiltebeitel and James Caddall Morehead.djvu/34

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

If we substitute these different expressions in the formula for the measure of curvature derived at the end of the preceding article, we obtain the following formula, which involves only the quantities    and their differential quotients of the first and second orders:


12.

Since we always have

it is clear that

is the general expression for the linear element on the curved surface. The analysis developed in the preceding article thus shows us that for finding the measure of curvature there is no need of finite formulæ, which express the coordinates    as functions of the indeterminates   but that the general expression for the magnitude of any linear element is sufficient. Let us proceed to some applications of this very important theorem.

Suppose that our surface can be developed upon another surface, curved or plane, so that to each point of the former surface, determined by the coordinates    will correspond a definite point of the latter surface, whose coordinates are    Evidently    can also be regarded as functions of the indeterminates   and therefore for the element we shall have an expression of the form

where    also denote functions of   But from the very notion of the development of one surface upon another it is clear that the elements corresponding to one another on the two surfaces are necessarily equal. Therefore we shall have identically

Thus the formula of the preceding article leads of itself to the remarkable

Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.