Page:History of botany (Sachs; Garnsey).djvu/498

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
478
Theory of the Nutrition
[BOOK III.


pressure in the case of the bleeding vine, were particularly striking and instructive. His measurements and the figures, on which he founded his calculations, were not so exact as they were often at a later time supposed to be, but he was himself satisfied with obtaining round, approximative numbers ; these under given circumstances supplied a sufficient basis for propositions which were new and afforded a certain amount of insight into the economy of the plant. This mode of proceeding showed his understanding; for the case of living bodies is different from that of metals and gases; in these we seek for constants which can then be inserted in general formulae, and to which therefore the nicest accuracy is applied; but in plants we have to deal with individual cases, and it is from a right interpretation of the measurements taken from them that we can arrive at general laws of vegetation.

To show that the forces of suction and pressure which operate in plants are not something sui generis, but prevail also in dead matter, in other words that they are an example of the general attraction of matter, a subject of particular interest at that time, Hales observed the absorption of water by substances with fine pores; and measured the force employed. These processes he compared with the force which swelling peas exert on the obstacles which they encounter, and thus obtained a more correct idea of the forces concerned in the movement of water in the plant than that given by the capillarity of glass-tubes, which Mariotte and Ray had employed to illustrate them.

Hales failed to appreciate the value of Malpighi's observations on the function of leaves, and was induced by the copiousness of the evaporation of water from their surfaces to overrate the physiological importance of that process; hence he saw in leaves chiefly organs of transpiration, which raise the sap by suction from the roots through the stem. In accordance with this view he denied the existence of a descending sap in the bark, and only admitted that the ascending sap