concentration of greenhouse gases in the atmosphere, for instance, and see what new equilibrium the system moves to (as well as what path it takes to get there). By tinkering with the initial equations of motion (and doing another spin up), the length of the spin-up, and the values of parameters fed in after the spin up, modelers can investigate a variety of different scenarios, time-periods, and assumptions.

The use of spin up and ensemble modeling is designed to smooth over the roughness and error that results from the demonstrably tricky business of simulating the long-term behavior of a large, complex, chaotic system; whether simple numerical approximations of the type discussed above or more sophisticated methods are used, a degree of “drift” in these models is inevitable. Repeated runs of the model for the same time period (and with the same parameters) will invariably produce a variety of predicted future states as the sensitive feedback mechanisms and chaotic dynamics perturb the model’s state in unexpected, path-dependent ways. After a large number of runs, though, a good model’s predictions will sketch out a well-grouped family of predictions--this range of predictions is a concrete application of the prediction horizon discussion from above. Considered as an ensemble, the predictions of a model provide not a *precise* prediction for the future of the climate, but rather a range of possibilities. This is true in spite of the fact that there will often be significant quantitative differences between the outputs of each model run. To a certain extent, the name of the game is *qualitative* prediction here.

This is one respect in which the practices of climatology and meteorology have become more unified since Richardson’s and Bjerknes’ day. Meteorologists--who deal with many of the same challenges that climatologists tackle, albeit under different constraints^{[1]}--employ nearly

- ↑ This too is a practical illustration of the concept of the predictive horizon. Weather prediction must be far more

213