Page:Light waves and their uses.djvu/106

From Wikisource
Jump to navigation Jump to search
This page has been validated.
88
Light Waves and Their Uses

to what was termed its "permanent condition," these bars were subjected to all sorts of treatment and maltreatment. The originals were cast and recast a great many times, and afterward they were cooled—a process which took several months.

After such treatment it is believed that the alteration in length of these bars will be exceedingly small, if anything at all. But, as a matter of fact, it is practically impossible to determine such small alterations, because, while there have been a number of copies made from this fundamental standard, these copies are all made of the same metal as the original; hence, if there were any change in the original, there would probably be similar changes in all the copies simultaneously, and it would therefore be impossible to detect the change. The extreme variation, however, must be of the order of one-thousandth of a millimeter or less in the whole distance of 1,000 millimeters.

The question rightly arises then: Why require any other standard, since this is known to be so accurate? The answer is that the requirements of scientific measurement are growing more and more rigorous every year. A hundred years ago a measurement made to within one-thousandth of an inch was considered rather phenomenal. Now it is one of the modern requirements in the most accurate machine work. At present a few measurements are relied upon to within one ten-thousandth of an inch. There are cases in which an accuracy of one-millionth of an inch has been attained, and it is even possible to detect differences of one five-millionth of an inch. Past experience indicates that we are merely anticipating the requirements of the not too distant future in producing means for the determination of such small quantities. Again, in order that the results of scientific work already completed, or shortly to be completed, may be compared