Page:Lorentz Grav1900.djvu/7

From Wikisource
Jump to navigation Jump to search
This page has been validated.

( 565 )

Now, it is clear that, by our assumptions, the flow of energy must be symmetrical all around Q; hence, if an amount E of energy traverses, in the outward direction, a spherical surface described around Q as centre with radius r, we shall have

,

and the force on P will be

.

It will have the direction of QP prolonged.

In the space surrounding Q the state of the aether will be stationary; hence, two spherical surfaces enclosing this particle must be traversed by equal quantities of energy. The quantity E will be independent of r, and the force K inversely proportional to the square of the distance.

If the vibrations of Q were opposed by no other resistance but that which results from radiation, the total amount of electro-magnetic energy enclosed by a surface surrounding Q would remain constant; E and K would then both be 0. If, on the contrary, in addition to the just mentioned resistance, there were a resistance of a different kind, the vibrations of Q would be accompanied by a continual loss of electro-magnetic energy; less energy would leave the space within one of the spherical surfaces than would enter that space. E would be negative, and, since b is positive, there would be attraction. It would be independent of the signs of the charges of P and Q.

The circumstance however, that this attraction could only exist, if in some way or other electromagnetic energy were continually disappearing, is so serious a difficulty, that what has been said cannot be considered as furnishing an explanation of gravitation. Nor is this the only objection that can be raised. If the mechanism of gravitation consisted in vibrations which cross the aether with the velocity of light, the attraction ought to be modified by the motion of the celestial bodies to a much larger extent than astronomical observations make it possible to admit.

§ 5. Though the states of the aether, the existence and the laws of which have been deduced from electromagnetic phenomena, are found insufficient to account for universal attraction, yet one may try to establish a theory which is not wholly different from that of