Page:Mysticism and Logic and Other Essays.djvu/240

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
228
MYSTICISM AND LOGIC

completed, we shall be able to reinterpret the phrase "identity of denotation," which remains obscure so long as it is taken as fundamental.

The first point to observe is that, in any proposition about "the author of Waverley," provided Scott is not explicitly mentioned, the denotation itself, i.e. Scott, does not occur, but only the concept of denotation, which will be represented by a variable. Suppose we say "the author of Waverley was the author of Marmion," we are certainly not saying that both were Scott—we may have forgotten that there was such a person as Scott. We are saying that there is some man who was the author of Waverley and the author of Marmion. That is to say, there is some one who wrote Waverley and Marmion, and no one else wrote them. Thus the identity is that of a variable, i.e. of an indefinite subject, "some one." This is why we can understand propositions about "the author of Waverley," without knowing who he was. When we say "the author of Waverley was a poet," we mean "one and only one man wrote Waverley, and he was a poet"; when we say "the author of Waverley was Scott" we mean "one and only one man wrote Waverley, and he was Scott." Here the identity is between a variable, i.e. an indeterminate subject ("he"), and Scott; "the author of Waverley" has been analysed away, and no longer appears as a constituent of the proposition.[1]

The reason why it is imperative to analyse away the phrase "the author of Waverley" may be stated as follows. It is plain that when we say "the author of Waverley is the author of Marmion," the is expresses

  1. The theory which I am advocating is set forth fully, with the logical grounds in its favour, in Principia Mathematica, Vol. I, Introduction, Chap. III; also, less fully, in Mind October, 1905