Page:Newton's Principia (1846).djvu/353

From Wikisource
Jump to navigation Jump to search
This page has been validated.
Sec. VII.]
of natural philosophy.
347

SCHOLIUM.

In order to investigate the resistances of fluids from experiments, I procured a square wooden vessel, whose length and breadth on the inside was 9 inches English measure, and its depth 9 feet ½; this I filled with rainwater: and having provided globes made up of wax, and lead included therein, I noted the times of the descents of these globes, the height through which they descended being 112 inches. A solid cubic foot of English measure contains 76 pounds troy weight of rainwater; and a solid inch contains ounces troy weight, or 253⅓ grains; and a globe of water of one inch in diameter contains 132,645 grains in air, or 132,8 grains in vacuo; and any other globe will be as the excess of its weight in vacuo above its weight in water.

Exper. 1. A globe whose weight was 156¼ grains in air, and 77 grains in water, described the whole height of 112 inches in 4 seconds. And, upon repeating the experiment, the globe spent again the very same time of 4 seconds in falling.

The weight of this globe in vacuo is 156 grains; and the excess of this weight above the weight of the globe in water is 79 grains. Hence the diameter of the globe appears to be 0,84224 parts of an inch. Then it will be, as that excess to the weight of the globe in vacuo, so is the density of the water to the density of the globe; and so is parts of the diameter of the globe (viz. 2,24597 inches) to the space 2F, which will be therefore 4,4256 inches. Now a globe falling in vacuo with its whole weight of 156 grains in one second of time will describe 193⅓ inches; and falling in water in the same time with the weight of 77 grains without resistance, will describe 95,219 inches; and in the time G, which is to one second of time in the subduplicate ratio of the space F, or of 2,2128 inches to 95,219 inches, will describe 2,2128 inches, and will acquire the greatest velocity H with which it is capable of descending in water. Therefore the time G is 0″.15244. And in this time G, with that greatest velocity H, the globe will describe the space 2F, which is 4,4256 inches; and therefore in 4 seconds will describe a space of 116,1245 inches. Subduct the space 1,3862944F, or 3,0676 inches, and there will remain a space of 113,0569 inches, which the globe falling through water in a very wide vessel will describe in 4 seconds. But this space, by reason of the narrowness of the wooden vessel before mentioned, ought to be diminished in a ratio compounded of the subduplicate ratio of the orifice of the vessel to the excess of this orifice above half a great circle of the globe, and of the simple ratio of the same orifice to its excess above a great circle of the globe, that is, in a ratio of 1 to 0,9914. This done, we have a space of 112,08 inches, which a globe falling through the water in this wooden vessel in 4 seconds of time ought nearly to describe by this theory; but it described 112 inches by the experiment.