Page:Newton's Principia (1846).djvu/438

From Wikisource
Jump to navigation Jump to search
This page has been validated.
432
the mathematical principles
[Book III.

cY to fY cp, or as fp to fY, and cY to cp; that is, if ph parallel to TN meet FP in h, as Fh to FY and FY to FP; that is, as Fh to FP or Dp to DP, and therefore as the area Dpmd to the area DPMd. And, therefore, seeing (by Corol. 1, Prop. XXX) the latter area and AZ² conjunctly are proportional to the horary motion of the nodes in the circle, the former area and AZ² conjunctly will be proportional to the horary motion of the nodes in the ellipsis.   Q.E.D.

Cor. Since, therefore, in any given position of the nodes, the sum of all the areas pDdm, in the time while the moon is carried from the quadrature to any place m, is the area mpQEd terminated at the tangent of the ellipsis QE; and the sum of all those areas, in one entire revolution, is the area of the whole ellipsis; the mean motion of the nodes in the ellipsis will be to the mean motion of the nodes in the circle as the ellipsis to the circle; that is, as Ta to TA, or 69 to 70. And, therefore, since (by Corol 2, Prop. XXX) the mean horary motion of the nodes in the circle is to 16″ 35‴ 16iv.36v. as AZ² to AT², if we take the angle 16″ 21‴ 3iv.30v. to the angle 16″ 35‴ 16iv.36v. as 69 to 70, the mean horary motion of the nodes in the ellipsis will be to 16″ 21‴ 3iv.30v. as AZ² to AT²; that is, as the square of the sine of the distance of the node from the sun to the square of the radius.

But the moon, by a radius drawn to the earth, describes the area in the syzygies with a greater velocity than it does that in the quadratures, and upon that account the time is contracted in the syzygies, and prolonged in the quadratures; and together with the time the motion of the nodes is likewise augmented or diminished. But the moment of the area in the quadrature of the moon was to the moment thereof in the syzygies as 10973 to 11073; and therefore the mean moment in the octants is to the excess in the syzygies, and to the defect in the quadratures, as 11023, the half sum of those numbers, to their half difference 50. Wherefore since the time of the moon in the several little equal parts of its orbit is reciprocally as its velocity, the mean time in the octants will be to the excess of the time in the quadratures, and to the defect of the time in the syzygies arising from this cause, nearly as 11023 to 50. But, reckoning from the quadratures to the syzygies, I find that the excess of the moments of the area, in the several places above the least moment in the quadratures, is nearly as the square of the sine of the moon's distance from the quadratures; and therefore the difference betwixt the moment in any place, and the mean moment in the octants, is as the difference betwixt the square of the sine of the moon's distance from the quadratures, and the square of the sine of 45 degrees, or half the square of the radius; and the increment of the time in the several places between the octants and quadratures, and the decrement thereof between the octants and syzygies, is in the same proportion. But the motion of the nodes, while the moon describes the several little equal parts of its orbit, is accelerated or retarded