Page:Newton's Principia (1846).djvu/550

From Wikisource
Jump to navigation Jump to search
This page has been validated.
544
the system of the world.

found by the mensuration of the French; and, therefore, by the preceding analogy, the difference of the heights comes out 915 inches of the Paris foot; and the sun's force will make the height of the sea at A to exceed the height of the same at E by 9 inches. And though the water of the canal ACEmlk be supposed to be frozen into a hard and solid consistence, yet the heights thereof at A and E, and all other intermediate places, would still remain the same.

Let Aa (in the following figure) represent that excess of height of 9 inches at A, and hf the excess of height at any other place h; and upon DC let fall the perpendicular fG, meeting the globe of the earth in F; and because the distance of the sun is so great that all the right lines drawn thereto may be considered as parallel, the force TM in any place f will be to the same force in the place A as the sine FG to the radius AC. And, therefore, since those forces tend to the sun in the direction of parallel lines, they will generate the parallel heights Ff, Aa, in the same ratio; and therefore the figure of the water Dfaeb will be a spheroid made by the revolution of an ellipsis about its longer axis ab. And the perpendicular height fh will be to the oblique height Ff as fG to fC, or as FG to AC: and therefore the height fh is to the height Aa in the duplicate ratio of FG to AC, that is, in the ratio of the versed sine of double the angle DCf to double the radius, and is thence given. And hence to the several moments of the apparent revolution of the sun about the earth we may infer the proportion of the ascent and descent of the waters at any given place under the equator, as well as of the diminution of that ascent and descent, whether arising from the latitude of places or from the sun's declination; viz., that on account of the latitude of places, the ascent and descent of the sea is in all places diminished in the duplicate ratio of the co-sines of latitude; and on account of the sun's declination, the ascent and descent under the equator is diminished in the duplicate ratio of the co-sine of declination. And in places without the equator the half sum of the morning and evening ascents (that is, the mean ascent) is diminished nearly in the same ratio.

Let S and L respectively represent the forces of the sun and moon placed in the equator, and at their mean distances from the earth; R the radius; T and V the versed sines of double the complements of the sun