Page:On Electric Touch and the Molecular Changes produced in Matter by Electric Waves.djvu/10

From Wikisource
Jump to navigation Jump to search
This page has been validated.
Changes produced in Matter by Electric Waves.
461

and white varieties of phosphorus. But it is not at all necessary to take only such extreme cases to show the influence of molecular or atomic aggregation in influencing the conductivity. This effect is brought into painful prominence by the variation produced in spite of all precautions in our standards of resistance.

Experimental Proof of Allotropic Changes being attended with Variation of Conductivity.—I shall now describe a direct experiment by which the change of conductivity produced in a substance by molecular change is exhibited. Red mercuric iodide is converted into the yellow variety by the application of heat, and the substance does not return to its original state till after a considerable lapse of time. The recovery here is very slow. A small quantity of mercuric iodide was now placed in a tube provided with sliding electrodes, and a current was made to pass through the substance by suitable compression. The conductivity of the substance is rather small, and therefore a thin stratum should be taken for experiment. The current is observed by means of a delicate galvanometer. On the application of heat to the tube (which converts the red into the yellow variety), there was at once produced, simultaneously with the molecular transformation, an increase of conductivity. This effect is not due to a rise of temperature, for the increased conductivity was still exhibited on cooling the tube. From this experiment it is seen that the molecular changes can be inferred from changes in the conductivity. In the case described above, the recovery from the B, or second stage, to the first stage, A, is slow; but there may be substances (and there are such substances) where, under the given conditions of temperature and other physical surroundings, the first stage is far more stable than the second; the substance will then pass back quickly from the B condition to the primitive state, on the cessation of the exciting cause, which gave rise to the transient B effect. The substance will in this case be "self-recovering."


[Electrical Reversal in the Radiation Product.

In the hypotheses given above, it was said that the reaction of the radiation product, or B variety, should be opposite to that of the substance in the normal condition, or in the A state. Thus a negative substance which by the action of radiation shows an increase of resistance during conversion from the A to the B state should exhibit a diminution of resistance when B variety is acted on by electric waves. The contrary would be the case with positive substances.

The following tabulated statement indicates the phenomena exhibited by two classes of substances:—