Page:On Electric Touch and the Molecular Changes produced in Matter by Electric Waves.djvu/7

From Wikisource
Jump to navigation Jump to search
This page has been validated.
458
Prof. J. C. Bose. On Electric Touch and the Molecular

further and further, and the increase of resistance became less and less. When the distance was increased to 25 cm. the action was reduced to zero. When the distance was increased to 30 cm. there was a diminution of resistance, showing that 25 cm. is, in this case, the critical distance. The receiver continued to exhibit a diminution until the radiator was removed to a distance of 70 cm., when the radiation intensity was too feeble to affect the receiver. Now this critical distance may approximately be regarded as a measure of the sensibility of the substance. In this particular case the electric touch has a negative sign. If by any means (some of which will be described later on) the substance becomes more sensitive, i.e., more negative, the critical distance will be increased. On the contrary, if the sensitiveness becomes less (the substance tending towards positive direction) the critical distance will be decreased. The application of this principle is of importance as affording a means of determining the variation of sensitiveness under different conditions.

Experiments with Osmium Receiver.—Substances which are feebly positive give a diminution of resistance when the radiator is close to the receiver, and an increase of resistance when the radiator is beyond the critical distance. Thus the critical distance for an osmium receiver (whose normal action is moderately positive) was found to be about 250 cm. The radiator at a distance of 300 cm. produced a deflection of - 3 divisions in a galvanometer placed in the receiver circuit. But at the distance of 200 cm. the deflection became + 4, and at the reduced distance of 50 cm. the deflection became + 150 divisions.

In order to avoid confusion, we may choose to call the effect due to strong intensity of radiation as the normal action. The sign of normal action might further be verified, wherever possible, by obtaining a reverse action with feeble radiation intensity.


Molecular Changes produced in Matter by the Action of Electric Waves.

A sensitive receiver made, say, of iron powder, has its conductivity suddenly increased by the action of electric radiation; but the sensitiveness of the receiver is lost after the first response, and it is necessary to tap it to restore the sensitiveness. On the theory of coherence, the loss of sensitiveness is explained by supposing that electric radiation brings the particles nearer and welds them together, and that the sensitiveness can then only be restored by the mechanical separation of the particles. This supposition, however, fails in the case of substances which exhibit an increase of resistance by the action of radiation. It may, however, be supposed that by some process, little understood, the particles are slightly separated by the action of electric waves, thus producing the observed increase of resistance. On this view, however, the restoration of sensitiveness by tapping remains unexplained.