Page:On Faraday's Lines of Force.pdf/12

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
166
ON FARADAY'S LINES OF FORCE.

together, since the rate of decrease of pressure along any line will be the sum of the combined rates, the velocity in the new system resolved in the same direction will be the sum of the resolved parts in the two original systems. The velocity in the new system will therefore be the resultant of the velocities at corresponding points in the two former systems.

It follows from this, by (9), that the quantity of fluid which crosses any fixed surface is, in the new system, the sum of the corresponding quantities in the old ones, and that the sources of the two original systems are simply combined to form the third.

It is evident that in the system in which the pressure is the difference of pressure in the two given systems the distribution of sources will be got by changing the sign of all the sources in the second system and adding them to those in the first.

(16) If the pressure at every point of a closed surface be the same and equal to p, and if there be no sources or sinks within the surface, then there will be no motion of the fluid within the surface, and the pressure within it will be uniform and equal to p.

For if there be motion of the fluid within the surface there will be tubes of fluid motion, and these tubes must either return into themselves or be terminated either within the surface or at its boundary. Now since the fluid always flows from places of greater pressure to places of less pressure, it cannot flow in a re-entering curve; since there are no sources or sinks within the surface, the tubes cannot begin or end except on the surface; and since the pressure at all points of the surface is the same, there can be no motion in tubes having both extremities on 'the surface. Hence there is no motion within the surface, and therefore no difference of pressure which would cause motion, and since the pressure at the bounding surface is p, the pressure at any point within it is also p.

(17) If the pressure at every point of a given closed surface be known, and the distribution of sources within the surface be also known, then only one distribution of pressures can exist within the surface.

For if two different distributions of pressures satisfying these conditions could be found, a third distribution could be formed in which the pressure at any point should be the difference of the pressures in the two former distributions. In this case. since the pressures at the surface and the sources within