Page:On Faraday's Lines of Force.pdf/27

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
ON FARADAY'S LINES OF FORCE
181

is found to be physically identical with the potential in statical electricity, and thus we have the means of connecting the two sets of phenomena. If we knew what amount of electricity, measured statically, passes along that current which we assume as our unit of current, then the connexion of electricity of tension with current electricity would be completed[1]. This has as yet been done only approximately, but we know enough to be certain that the conducting powers of different substances differ only in degree, and that the difference between glass and metal is, that the resistance is a great but finite quantity in glass, and a small but finite quantity in metal. Thus the analogy between statical electricity and fluid motion turns out more perfect than we might have supposed, for there the induction goes on by conduction just as in current electricity, but the quantity conducted is insensible owing to the great resistance of the dielectrics[2]’.

On Electro-motive Forces.

When a uniform current exists in a closed circuit it is evident that some other forces must act on the fluid besides the pressures. For if the current were due to difference of pressures, then it would flow from the point of greatest pressure in both directions to the point of least pressure, whereas in reality it circulates in one direction constantly. We must therefore admit the existence of certain forces capable of keeping up a constant current in a closed circuit. Of these the most remarkable is that which is produced by chemical action. A cell of a voltaic battery, or rather the surface of separation of the fluid of the cell and the zinc, is the seat of an electro-motive force which can maintain a current in opposition to the resistance of the circuit. If we adopt the usual convention in speaking of electric currents, the positive current is from the fluid through the platinum, the conducting circuit, and the zinc, back to the fluid again. If the electro-motive force act only in the surface of separation of the fluid and zinc, then the tension of electricity in the fluid must exceed that in the zinc by a quantity depending on the nature and length of the circuit and on the strength of the current in the conductor. In order to keep up this difference of pressure there must be an electro-motive force whose intensity is measured by that difference of pressure. If be the electro-motive force, the quantity of the current or the number of electrical

  1. See Exp. Res. (371).
  2. Exp. Res. Vol. III. p. 513.