Page:On Faraday's Lines of Force.pdf/6

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
160
ON FARADAY'S LINES OF FORCE.


I. Theory of the Motion of an incompressible Fluid.

(1) The substance here treated of must not be assumed to possess any of the properties of ordinary fluids except those of freedom of motion and resistance to compression. It is not even a hypothetical fluid which is introduced to explain actual phenomena. It is merely a collection of imaginary properties which may be employed for establishing certain theorems in pure mathematics in a way more intelligible to many minds and more applicable to physical problems than that in which algebraic symbols alone are used. The use of the word “ Fluid ” will not lead us into error, if we remember that it denotes a purely imaginary substance with the following property:

The portion of fluid which at any instant occupied a given volume, will at any succeeding instant occupy an equal volume.

This law expresses the incompressibility of the fluid, and furnishes us with a convenient measure of its quantity, namely its volume. The unit of quantity of the fluid will therefore be the unit of volume.

(2) The direction of motion of the fluid will in general be different at different points of the space which it occupies, but since the direction is determinate for every such point, we may conceive a line to begin at any point and to be continued so that every element of the line indicates by its direction the direction of motion at that point of space. Lines drawn in such a manner that their direction always indicates the direction of fluid motion are called lines of fluid motion.

If the motion of the fluid be what is called steady motion, that is, if the direction and velocity of the motion at any fixed point be independent of the time, these curves will represent the paths of individual particles of the fluid, but if the motion be variable this will not generally be the case. The cases of motion which will come under our notice will be those of steady motion.

(3) If upon any surface which cuts the lines of fluid motion we draw a closed curve, and if from every point of this curve we draw a line of motion, these lines of motion will generate a tubular surface which we may call a tube of fluid motion. Since this surface is generated by lines in the direction of fluid