Page:On Faraday's Lines of Force.pdf/8

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
162
ON FARADAY'S LINES OF FORCE.

is determined by this system of unit tubes; for the direction of motion is that of the tube through the point in question, and the velocity is the reciprocal of the area of the section of the unit tube at that point.

(7) We have now obtained a geometrical construction which completely defines the motion of the fluid by dividing the space it occupies into a system of unit tubes. We have next to shew how by means of these tubes we may ascertain various points relating to the motion of the fluid.

A unit tube may either return into itself, or may begin and end at different points, and these may be either in the boundary of the space in which we investigate the motion, or within that space. In the first case there is a continual circulation of fluid in the tube, in the second the fluid enters at one end and flows out at the other. If the extremities of the tube are in the bounding surface, the fluid may be supposed to be continually supplied from without from an unknown source, and to flow out at the other into an unknown reservoir; but if the origin of the tube or its termination be within the space under consideration, then we must conceive the fluid to be supplied by a source within that space, capable of creating and emitting unity of fluid in unity of time, and to be afterwards swallowed up by a sink capable of receiving and destroying the same amount continually.

There is nothing self-contradictory in the conception of these sources where the fluid is created, and sinks where it is annihilated. The properties of the fluid are at our disposal, we have made it incompressible, and now we suppose it produced from nothing at certain points and reduced to nothing at others. The places of production will be called sources, and their numerical value will be the number of units of fluid which they produce in unit of time. The places of reduction will, for want of a better name, be called sinks, and will be estimated by the number of units of fluid absorbed in unit of time. Both places will sometimes be called sources, a source being understood to be a sink when its sign is negative.

(8) It is evident that the amount of fluid which passes any fixed surface is measured by the number of unit tubes which cut it, and the direction in which the fluid passes is determined by that of its motion in the tubes. If the surface be a closed one, then any tube whose terminations lie on the same side of the surface must cross the surface as many times in the one direction as in the other, and therefore must carry as much fluid out of the surface as