of private spaces (perspectives), or, since “points of view” have not been defined, we may say it is the system of the private spaces themselves. These private spaces will each count as one point, or at any rate as one element, in perspective space. They are ordered by means of their similarities. Suppose, for example, that we start from one which contains the appearance of a circular disc, such as would be called a penny, and suppose this appearance, in the perspective in question, is circular, not elliptic. We can then form a whole series of perspectives containing a graduated series of circular aspects of varying sizes: for this purpose we only have to move (as we say) towards the penny or away from it. The perspectives in which the penny looks circular will be said to lie on a straight line in perspective space, and their order on this line will be that of the sizes of the circular aspects. Moreover—though this statement must be noticed and subsequently examined—the perspectives in which the penny looks big will be said to be nearer to the penny than those in which it looks small. It is to be remarked also that any other “thing” than our penny might have been chosen to define the relations of our perspectives in perspective space, and that experience shows that the same spatial order of perspectives would have resulted.
In order to explain the correlation of private spaces with perspective space, we have first to explain what is meant by “the place (in perspective space) where a thing is.” For this purpose, let us again consider the penny which appears in many perspectives. We formed a straight line of perspectives in which the penny looked circular, and we agreed that those in which it looked larger were to be considered as nearer to the penny. We can form another straight line of perspectives in which the penny is seen end-on and looks like a straight line of